The Variety of Integrable Killing Tensors on the 3-Sphere
Integrable Killing tensors are used to classify orthogonal coordinates in which the classical Hamilton-Jacobi equation can be solved by a separation of variables. We completely solve the Nijenhuis integrability conditions for Killing tensors on the sphere S³ and give a set of isometry invariants for...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146598 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The Variety of Integrable Killing Tensors on the 3-Sphere / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 46 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146598 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1465982019-02-11T01:23:42Z The Variety of Integrable Killing Tensors on the 3-Sphere Schöbel, K. Integrable Killing tensors are used to classify orthogonal coordinates in which the classical Hamilton-Jacobi equation can be solved by a separation of variables. We completely solve the Nijenhuis integrability conditions for Killing tensors on the sphere S³ and give a set of isometry invariants for the integrability of a Killing tensor. We describe explicitly the space of solutions as well as its quotient under isometries as projective varieties and interpret their algebro-geometric properties in terms of Killing tensors. Furthermore, we identify all Stäckel systems in these varieties. This allows us to recover the known list of separation coordinates on S³ in a simple and purely algebraic way. In particular, we prove that their moduli space is homeomorphic to the associahedron K₄. 2014 Article The Variety of Integrable Killing Tensors on the 3-Sphere / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 46 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53A60; 14H10; 14M12 DOI:10.3842/SIGMA.2014.080 http://dspace.nbuv.gov.ua/handle/123456789/146598 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Integrable Killing tensors are used to classify orthogonal coordinates in which the classical Hamilton-Jacobi equation can be solved by a separation of variables. We completely solve the Nijenhuis integrability conditions for Killing tensors on the sphere S³ and give a set of isometry invariants for the integrability of a Killing tensor. We describe explicitly the space of solutions as well as its quotient under isometries as projective varieties and interpret their algebro-geometric properties in terms of Killing tensors. Furthermore, we identify all Stäckel systems in these varieties. This allows us to recover the known list of separation coordinates on S³ in a simple and purely algebraic way. In particular, we prove that their moduli space is homeomorphic to the associahedron K₄. |
format |
Article |
author |
Schöbel, K. |
spellingShingle |
Schöbel, K. The Variety of Integrable Killing Tensors on the 3-Sphere Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Schöbel, K. |
author_sort |
Schöbel, K. |
title |
The Variety of Integrable Killing Tensors on the 3-Sphere |
title_short |
The Variety of Integrable Killing Tensors on the 3-Sphere |
title_full |
The Variety of Integrable Killing Tensors on the 3-Sphere |
title_fullStr |
The Variety of Integrable Killing Tensors on the 3-Sphere |
title_full_unstemmed |
The Variety of Integrable Killing Tensors on the 3-Sphere |
title_sort |
variety of integrable killing tensors on the 3-sphere |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146598 |
citation_txt |
The Variety of Integrable Killing Tensors on the 3-Sphere / K. Schöbel // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 46 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT schobelk thevarietyofintegrablekillingtensorsonthe3sphere AT schobelk varietyofintegrablekillingtensorsonthe3sphere |
first_indexed |
2023-05-20T17:25:11Z |
last_indexed |
2023-05-20T17:25:11Z |
_version_ |
1796153253308661760 |