Algebraic Geometry of Matrix Product States

We quantify the representational power of matrix product states (MPS) for entangled qubit systems by giving polynomial expressions in a pure quantum state's amplitudes which hold if and only if the state is a translation invariant matrix product state or a limit of such states. For systems with...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Critch, A., Morton, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146599
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Algebraic Geometry of Matrix Product States / A. Critch, J. Morton // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146599
record_format dspace
spelling irk-123456789-1465992019-02-11T01:24:02Z Algebraic Geometry of Matrix Product States Critch, A. Morton, J. We quantify the representational power of matrix product states (MPS) for entangled qubit systems by giving polynomial expressions in a pure quantum state's amplitudes which hold if and only if the state is a translation invariant matrix product state or a limit of such states. For systems with few qubits, we give these equations explicitly, considering both periodic and open boundary conditions. Using the classical theory of trace varieties and trace algebras, we explain the relationship between MPS and hidden Markov models and exploit this relationship to derive useful parameterizations of MPS. We make four conjectures on the identifiability of MPS parameters. 2014 Article Algebraic Geometry of Matrix Product States / A. Critch, J. Morton // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14J81; 81Q80; 14Q15 DOI:10.3842/SIGMA.2014.095 http://dspace.nbuv.gov.ua/handle/123456789/146599 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We quantify the representational power of matrix product states (MPS) for entangled qubit systems by giving polynomial expressions in a pure quantum state's amplitudes which hold if and only if the state is a translation invariant matrix product state or a limit of such states. For systems with few qubits, we give these equations explicitly, considering both periodic and open boundary conditions. Using the classical theory of trace varieties and trace algebras, we explain the relationship between MPS and hidden Markov models and exploit this relationship to derive useful parameterizations of MPS. We make four conjectures on the identifiability of MPS parameters.
format Article
author Critch, A.
Morton, J.
spellingShingle Critch, A.
Morton, J.
Algebraic Geometry of Matrix Product States
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Critch, A.
Morton, J.
author_sort Critch, A.
title Algebraic Geometry of Matrix Product States
title_short Algebraic Geometry of Matrix Product States
title_full Algebraic Geometry of Matrix Product States
title_fullStr Algebraic Geometry of Matrix Product States
title_full_unstemmed Algebraic Geometry of Matrix Product States
title_sort algebraic geometry of matrix product states
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146599
citation_txt Algebraic Geometry of Matrix Product States / A. Critch, J. Morton // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT critcha algebraicgeometryofmatrixproductstates
AT mortonj algebraicgeometryofmatrixproductstates
first_indexed 2023-05-20T17:25:11Z
last_indexed 2023-05-20T17:25:11Z
_version_ 1796153250538323968