Generalized Coefficients for Hopf Cyclic Cohomology

A category of coefficients for Hopf cyclic cohomology is defined. It is shown that this category has two proper subcategories of which the smallest one is the known category of stable anti Yetter-Drinfeld modules. The middle subcategory is comprised of those coefficients which satisfy a generalized...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Hassanzadeh, M., Kucerovsky, D., Rangipour, B.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146601
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Generalized Coefficients for Hopf Cyclic Cohomology / M. Hassanzadeh, D. Kucerovsky, B. Rangipour // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146601
record_format dspace
spelling irk-123456789-1466012019-02-11T01:23:01Z Generalized Coefficients for Hopf Cyclic Cohomology Hassanzadeh, M. Kucerovsky, D. Rangipour, B. A category of coefficients for Hopf cyclic cohomology is defined. It is shown that this category has two proper subcategories of which the smallest one is the known category of stable anti Yetter-Drinfeld modules. The middle subcategory is comprised of those coefficients which satisfy a generalized SAYD condition depending on both the Hopf algebra and the (co)algebra in question. Some examples are introduced to show that these three categories are different. It is shown that all components of Hopf cyclic cohomology work well with the new coefficients we have defined. 2014 Article Generalized Coefficients for Hopf Cyclic Cohomology / M. Hassanzadeh, D. Kucerovsky, B. Rangipour // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 19D55; 16T05; 11M55 DOI:10.3842/SIGMA.2014.093 http://dspace.nbuv.gov.ua/handle/123456789/146601 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A category of coefficients for Hopf cyclic cohomology is defined. It is shown that this category has two proper subcategories of which the smallest one is the known category of stable anti Yetter-Drinfeld modules. The middle subcategory is comprised of those coefficients which satisfy a generalized SAYD condition depending on both the Hopf algebra and the (co)algebra in question. Some examples are introduced to show that these three categories are different. It is shown that all components of Hopf cyclic cohomology work well with the new coefficients we have defined.
format Article
author Hassanzadeh, M.
Kucerovsky, D.
Rangipour, B.
spellingShingle Hassanzadeh, M.
Kucerovsky, D.
Rangipour, B.
Generalized Coefficients for Hopf Cyclic Cohomology
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Hassanzadeh, M.
Kucerovsky, D.
Rangipour, B.
author_sort Hassanzadeh, M.
title Generalized Coefficients for Hopf Cyclic Cohomology
title_short Generalized Coefficients for Hopf Cyclic Cohomology
title_full Generalized Coefficients for Hopf Cyclic Cohomology
title_fullStr Generalized Coefficients for Hopf Cyclic Cohomology
title_full_unstemmed Generalized Coefficients for Hopf Cyclic Cohomology
title_sort generalized coefficients for hopf cyclic cohomology
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146601
citation_txt Generalized Coefficients for Hopf Cyclic Cohomology / M. Hassanzadeh, D. Kucerovsky, B. Rangipour // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 16 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT hassanzadehm generalizedcoefficientsforhopfcycliccohomology
AT kucerovskyd generalizedcoefficientsforhopfcycliccohomology
AT rangipourb generalizedcoefficientsforhopfcycliccohomology
first_indexed 2023-05-20T17:25:11Z
last_indexed 2023-05-20T17:25:11Z
_version_ 1796153250748039168