Generalized Coefficients for Hopf Cyclic Cohomology
A category of coefficients for Hopf cyclic cohomology is defined. It is shown that this category has two proper subcategories of which the smallest one is the known category of stable anti Yetter-Drinfeld modules. The middle subcategory is comprised of those coefficients which satisfy a generalized...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146601 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Generalized Coefficients for Hopf Cyclic Cohomology / M. Hassanzadeh, D. Kucerovsky, B. Rangipour // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146601 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1466012019-02-11T01:23:01Z Generalized Coefficients for Hopf Cyclic Cohomology Hassanzadeh, M. Kucerovsky, D. Rangipour, B. A category of coefficients for Hopf cyclic cohomology is defined. It is shown that this category has two proper subcategories of which the smallest one is the known category of stable anti Yetter-Drinfeld modules. The middle subcategory is comprised of those coefficients which satisfy a generalized SAYD condition depending on both the Hopf algebra and the (co)algebra in question. Some examples are introduced to show that these three categories are different. It is shown that all components of Hopf cyclic cohomology work well with the new coefficients we have defined. 2014 Article Generalized Coefficients for Hopf Cyclic Cohomology / M. Hassanzadeh, D. Kucerovsky, B. Rangipour // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 19D55; 16T05; 11M55 DOI:10.3842/SIGMA.2014.093 http://dspace.nbuv.gov.ua/handle/123456789/146601 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A category of coefficients for Hopf cyclic cohomology is defined. It is shown that this category has two proper subcategories of which the smallest one is the known category of stable anti Yetter-Drinfeld modules. The middle subcategory is comprised of those coefficients which satisfy a generalized SAYD condition depending on both the Hopf algebra and the (co)algebra in question. Some examples are introduced to show that these three categories are different. It is shown that all components of Hopf cyclic cohomology work well with the new coefficients we have defined. |
format |
Article |
author |
Hassanzadeh, M. Kucerovsky, D. Rangipour, B. |
spellingShingle |
Hassanzadeh, M. Kucerovsky, D. Rangipour, B. Generalized Coefficients for Hopf Cyclic Cohomology Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Hassanzadeh, M. Kucerovsky, D. Rangipour, B. |
author_sort |
Hassanzadeh, M. |
title |
Generalized Coefficients for Hopf Cyclic Cohomology |
title_short |
Generalized Coefficients for Hopf Cyclic Cohomology |
title_full |
Generalized Coefficients for Hopf Cyclic Cohomology |
title_fullStr |
Generalized Coefficients for Hopf Cyclic Cohomology |
title_full_unstemmed |
Generalized Coefficients for Hopf Cyclic Cohomology |
title_sort |
generalized coefficients for hopf cyclic cohomology |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146601 |
citation_txt |
Generalized Coefficients for Hopf Cyclic Cohomology / M. Hassanzadeh, D. Kucerovsky, B. Rangipour // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 16 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT hassanzadehm generalizedcoefficientsforhopfcycliccohomology AT kucerovskyd generalizedcoefficientsforhopfcycliccohomology AT rangipourb generalizedcoefficientsforhopfcycliccohomology |
first_indexed |
2023-05-20T17:25:11Z |
last_indexed |
2023-05-20T17:25:11Z |
_version_ |
1796153250748039168 |