A Reciprocal Transformation for the Constant Astigmatism Equation
We introduce a nonlocal transformation to generate exact solutions of the constant astigmatism equation zyy+(1/z)xx+2=0. The transformation is related to the special case of the famous Bäcklund transformation of the sine-Gordon equation with the Bäcklund parameter λ=±1. It is also a nonlocal symmetr...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146605 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A Reciprocal Transformation for the Constant Astigmatism Equation / A. Hlaváč, M. Marvan // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 31 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146605 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1466052019-02-11T01:23:10Z A Reciprocal Transformation for the Constant Astigmatism Equation Hlaváč, A. Marvan, M. We introduce a nonlocal transformation to generate exact solutions of the constant astigmatism equation zyy+(1/z)xx+2=0. The transformation is related to the special case of the famous Bäcklund transformation of the sine-Gordon equation with the Bäcklund parameter λ=±1. It is also a nonlocal symmetry. 2014 Article A Reciprocal Transformation for the Constant Astigmatism Equation / A. Hlaváč, M. Marvan // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 31 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53A05; 35A30; 35C05; 37K35 DOI:10.3842/SIGMA.2014.091 http://dspace.nbuv.gov.ua/handle/123456789/146605 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We introduce a nonlocal transformation to generate exact solutions of the constant astigmatism equation zyy+(1/z)xx+2=0. The transformation is related to the special case of the famous Bäcklund transformation of the sine-Gordon equation with the Bäcklund parameter λ=±1. It is also a nonlocal symmetry. |
format |
Article |
author |
Hlaváč, A. Marvan, M. |
spellingShingle |
Hlaváč, A. Marvan, M. A Reciprocal Transformation for the Constant Astigmatism Equation Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Hlaváč, A. Marvan, M. |
author_sort |
Hlaváč, A. |
title |
A Reciprocal Transformation for the Constant Astigmatism Equation |
title_short |
A Reciprocal Transformation for the Constant Astigmatism Equation |
title_full |
A Reciprocal Transformation for the Constant Astigmatism Equation |
title_fullStr |
A Reciprocal Transformation for the Constant Astigmatism Equation |
title_full_unstemmed |
A Reciprocal Transformation for the Constant Astigmatism Equation |
title_sort |
reciprocal transformation for the constant astigmatism equation |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146605 |
citation_txt |
A Reciprocal Transformation for the Constant Astigmatism Equation / A. Hlaváč, M. Marvan // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 31 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT hlavaca areciprocaltransformationfortheconstantastigmatismequation AT marvanm areciprocaltransformationfortheconstantastigmatismequation AT hlavaca reciprocaltransformationfortheconstantastigmatismequation AT marvanm reciprocaltransformationfortheconstantastigmatismequation |
first_indexed |
2023-05-20T17:25:12Z |
last_indexed |
2023-05-20T17:25:12Z |
_version_ |
1796153250958802944 |