Quantitative K-Theory Related to Spin Chern Numbers

We examine the various indices defined on pairs of almost commuting unitary matrices that can detect pairs that are far from commuting pairs. We do this in two symmetry classes, that of general unitary matrices and that of self-dual matrices, with an emphasis on quantitative results. We determine wh...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Loring, T.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146609
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantitative K-Theory Related to Spin Chern Numbers / T.A. Loring // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146609
record_format dspace
spelling irk-123456789-1466092019-02-12T01:24:02Z Quantitative K-Theory Related to Spin Chern Numbers Loring, T.A. We examine the various indices defined on pairs of almost commuting unitary matrices that can detect pairs that are far from commuting pairs. We do this in two symmetry classes, that of general unitary matrices and that of self-dual matrices, with an emphasis on quantitative results. We determine which values of the norm of the commutator guarantee that the indices are defined, where they are equal, and what quantitative results on the distance to a pair with a different index are possible. We validate a method of computing spin Chern numbers that was developed with Hastings and only conjectured to be correct. Specifically, the Pfaffian-Bott index can be computed by the ''log method'' for commutator norms up to a specific constant. 2014 Article Quantitative K-Theory Related to Spin Chern Numbers / T.A. Loring // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 19M05; 46L60; 46L80 DOI:10.3842/SIGMA.2014.077 http://dspace.nbuv.gov.ua/handle/123456789/146609 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We examine the various indices defined on pairs of almost commuting unitary matrices that can detect pairs that are far from commuting pairs. We do this in two symmetry classes, that of general unitary matrices and that of self-dual matrices, with an emphasis on quantitative results. We determine which values of the norm of the commutator guarantee that the indices are defined, where they are equal, and what quantitative results on the distance to a pair with a different index are possible. We validate a method of computing spin Chern numbers that was developed with Hastings and only conjectured to be correct. Specifically, the Pfaffian-Bott index can be computed by the ''log method'' for commutator norms up to a specific constant.
format Article
author Loring, T.A.
spellingShingle Loring, T.A.
Quantitative K-Theory Related to Spin Chern Numbers
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Loring, T.A.
author_sort Loring, T.A.
title Quantitative K-Theory Related to Spin Chern Numbers
title_short Quantitative K-Theory Related to Spin Chern Numbers
title_full Quantitative K-Theory Related to Spin Chern Numbers
title_fullStr Quantitative K-Theory Related to Spin Chern Numbers
title_full_unstemmed Quantitative K-Theory Related to Spin Chern Numbers
title_sort quantitative k-theory related to spin chern numbers
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146609
citation_txt Quantitative K-Theory Related to Spin Chern Numbers / T.A. Loring // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT loringta quantitativektheoryrelatedtospinchernnumbers
first_indexed 2023-05-20T17:25:12Z
last_indexed 2023-05-20T17:25:12Z
_version_ 1796153253838192640