Maximal Green Sequences of Exceptional Finite Mutation Type Quivers

Maximal green sequences are particular sequences of mutations of quivers which were introduced by Keller in the context of quantum dilogarithm identities and independently by Cecotti-Córdova-Vafa in the context of supersymmetric gauge theory. The existence of maximal green sequences for exceptional...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Seven, A.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146610
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Maximal Green Sequences of Exceptional Finite Mutation Type Quivers / A.I. Seven // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146610
record_format dspace
spelling irk-123456789-1466102019-02-11T01:23:18Z Maximal Green Sequences of Exceptional Finite Mutation Type Quivers Seven, A.I. Maximal green sequences are particular sequences of mutations of quivers which were introduced by Keller in the context of quantum dilogarithm identities and independently by Cecotti-Córdova-Vafa in the context of supersymmetric gauge theory. The existence of maximal green sequences for exceptional finite mutation type quivers has been shown by Alim-Cecotti-Córdova-Espahbodi-Rastogi-Vafa except for the quiver X₇. In this paper we show that the quiver X₇ does not have any maximal green sequences. We also generalize the idea of the proof to give sufficient conditions for the non-existence of maximal green sequences for an arbitrary quiver. 2014 Article Maximal Green Sequences of Exceptional Finite Mutation Type Quivers / A.I. Seven // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 11 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 15B36; 05C50 DOI:10.3842/SIGMA.2014.089 http://dspace.nbuv.gov.ua/handle/123456789/146610 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Maximal green sequences are particular sequences of mutations of quivers which were introduced by Keller in the context of quantum dilogarithm identities and independently by Cecotti-Córdova-Vafa in the context of supersymmetric gauge theory. The existence of maximal green sequences for exceptional finite mutation type quivers has been shown by Alim-Cecotti-Córdova-Espahbodi-Rastogi-Vafa except for the quiver X₇. In this paper we show that the quiver X₇ does not have any maximal green sequences. We also generalize the idea of the proof to give sufficient conditions for the non-existence of maximal green sequences for an arbitrary quiver.
format Article
author Seven, A.I.
spellingShingle Seven, A.I.
Maximal Green Sequences of Exceptional Finite Mutation Type Quivers
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Seven, A.I.
author_sort Seven, A.I.
title Maximal Green Sequences of Exceptional Finite Mutation Type Quivers
title_short Maximal Green Sequences of Exceptional Finite Mutation Type Quivers
title_full Maximal Green Sequences of Exceptional Finite Mutation Type Quivers
title_fullStr Maximal Green Sequences of Exceptional Finite Mutation Type Quivers
title_full_unstemmed Maximal Green Sequences of Exceptional Finite Mutation Type Quivers
title_sort maximal green sequences of exceptional finite mutation type quivers
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146610
citation_txt Maximal Green Sequences of Exceptional Finite Mutation Type Quivers / A.I. Seven // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 11 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT sevenai maximalgreensequencesofexceptionalfinitemutationtypequivers
first_indexed 2023-05-20T17:25:12Z
last_indexed 2023-05-20T17:25:12Z
_version_ 1796153253944098816