Quantum Isometry Groups of Noncommutative Manifolds Obtained by Deformation Using Dual Unitary 2-Cocycles
It is proved that the (volume and orientation-preserving) quantum isometry group of a spectral triple obtained by deformation by some dual unitary 2-cocycle is isomorphic with a similar twist-deformation of the quantum isometry group of the original (undeformed) spectral triple. This result generali...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146611 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Quantum Isometry Groups of Noncommutative Manifolds Obtained by Deformation Using Dual Unitary 2-Cocycles / D. Goswami, S. Joardar // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | It is proved that the (volume and orientation-preserving) quantum isometry group of a spectral triple obtained by deformation by some dual unitary 2-cocycle is isomorphic with a similar twist-deformation of the quantum isometry group of the original (undeformed) spectral triple. This result generalizes similar work by Bhowmick and Goswami for Rieffel-deformed spectral triples in [Comm. Math. Phys. 285 (2009), 421-444]. |
---|