2025-02-22T10:47:42-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-146611%22&qt=morelikethis&rows=5
2025-02-22T10:47:42-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-146611%22&qt=morelikethis&rows=5
2025-02-22T10:47:42-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:47:42-05:00 DEBUG: Deserialized SOLR response
Quantum Isometry Groups of Noncommutative Manifolds Obtained by Deformation Using Dual Unitary 2-Cocycles
It is proved that the (volume and orientation-preserving) quantum isometry group of a spectral triple obtained by deformation by some dual unitary 2-cocycle is isomorphic with a similar twist-deformation of the quantum isometry group of the original (undeformed) spectral triple. This result generali...
Saved in:
Main Authors: | Goswami, D., Joardar, S. |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2014
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/146611 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-22T10:47:42-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-146611%22&qt=morelikethis
2025-02-22T10:47:42-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-146611%22&qt=morelikethis
2025-02-22T10:47:42-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:47:42-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
Quantum Isometry Group for Spectral Triples with Real Structure
by: Goswami, D.
Published: (2010) -
Algebraic Properties of Curvature Operators in Lorentzian Manifolds with Large Isometry Groups
by: Calvaruso, G., et al.
Published: (2010) -
On the Group of Foliation Isometries
by: Narmanov, A.Yu., et al.
Published: (2009) -
On representations of permutations groups as isometry groups of \(n\)-semimetric spaces
by: Gerdiy, Oleg, et al.
Published: (2018) -
On representations of permutations groups as isometry groups of n-semimetric spaces
by: Gerdiy, O., et al.
Published: (2015)