Werner's Measure on Self-Avoiding Loops and Welding

Werner's conformally invariant family of measures on self-avoiding loops on Riemann surfaces is determined by a single measure μ0 on self-avoiding loops in C∖{0} which surround 0. Our first major objective is to show that the measure μ0 is infinitesimally invariant with respect to conformal vec...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Chavez, A., Pickrell, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146622
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Werner's Measure on Self-Avoiding Loops and Welding / A. Chavez, D. Pickrell // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Werner's conformally invariant family of measures on self-avoiding loops on Riemann surfaces is determined by a single measure μ0 on self-avoiding loops in C∖{0} which surround 0. Our first major objective is to show that the measure μ0 is infinitesimally invariant with respect to conformal vector fields (essentially the Virasoro algebra of conformal field theory). This makes essential use of classical variational formulas of Duren and Schiffer, which we recast in representation theoretic terms for efficient computation. We secondly show how these formulas can be used to calculate (in principle, and sometimes explicitly) quantities (such as moments for coefficients of univalent functions) associated to the conformal welding for a self-avoiding loop. This gives an alternate proof of the uniqueness of Werner's measure. We also attempt to use these variational formulas to derive a differential equation for the (Laplace transform of) the ''diagonal distribution'' for the conformal welding associated to a loop; this generalizes in a suggestive way to a deformation of Werner's measure conjectured to exist by Kontsevich and Suhov (a basic inspiration for this paper).