The GraviGUT Algebra Is not a Subalgebra of E₈, but E₈ Does Contain an Extended GraviGUT Algebra
The (real) GraviGUT algebra is an extension of the spin(11,3) algebra by a 64-dimensional Lie algebra, but there is some ambiguity in the literature about its definition. Recently, Lisi constructed an embedding of the GraviGUT algebra into the quaternionic real form of E₈. We clarify the definition,...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146626 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The GraviGUT Algebra Is not a Subalgebra of E₈, but E₈ Does Contain an Extended GraviGUT Algebra / A. Douglas, J. Repka // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The (real) GraviGUT algebra is an extension of the spin(11,3) algebra by a 64-dimensional Lie algebra, but there is some ambiguity in the literature about its definition. Recently, Lisi constructed an embedding of the GraviGUT algebra into the quaternionic real form of E₈. We clarify the definition, showing that there is only one possibility, and then prove that the GraviGUT algebra cannot be embedded into any real form of E₈. We then modify Lisi's construction to create true Lie algebra embeddings of the extended GraviGUT algebra into E₈ We classify these embeddings up to inner automorphism. |
---|