The GraviGUT Algebra Is not a Subalgebra of E₈, but E₈ Does Contain an Extended GraviGUT Algebra

The (real) GraviGUT algebra is an extension of the spin(11,3) algebra by a 64-dimensional Lie algebra, but there is some ambiguity in the literature about its definition. Recently, Lisi constructed an embedding of the GraviGUT algebra into the quaternionic real form of E₈. We clarify the definition,...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Douglas, A., Repka, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146626
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The GraviGUT Algebra Is not a Subalgebra of E₈, but E₈ Does Contain an Extended GraviGUT Algebra / A. Douglas, J. Repka // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The (real) GraviGUT algebra is an extension of the spin(11,3) algebra by a 64-dimensional Lie algebra, but there is some ambiguity in the literature about its definition. Recently, Lisi constructed an embedding of the GraviGUT algebra into the quaternionic real form of E₈. We clarify the definition, showing that there is only one possibility, and then prove that the GraviGUT algebra cannot be embedded into any real form of E₈. We then modify Lisi's construction to create true Lie algebra embeddings of the extended GraviGUT algebra into E₈ We classify these embeddings up to inner automorphism.