Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras

For a perfect Lie algebra h we classify all Lie algebras containing h as a subalgebra of codimension 1. The automorphism groups of such Lie algebras are fully determined as subgroups of the semidirect product h⋉(k∗×AutLie(h)). In the non-perfect case the classification of these Lie algebras is a dif...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Agore, A.L., Militaru, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146642
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras / A.L. Agore, G. Militaru // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:For a perfect Lie algebra h we classify all Lie algebras containing h as a subalgebra of codimension 1. The automorphism groups of such Lie algebras are fully determined as subgroups of the semidirect product h⋉(k∗×AutLie(h)). In the non-perfect case the classification of these Lie algebras is a difficult task. Let l(2n+1,k) be the Lie algebra with the bracket [Ei,G]=Ei, [G,Fi]=Fi, for all i=1,…,n. We explicitly describe all Lie algebras containing l(2n+1,k) as a subalgebra of codimension 1 by computing all possible bicrossed products k⋈l(2n+1,k). They are parameterized by a set of matrices Mn(k)⁴×k²ⁿ⁺² which are explicitly determined. Several matched pair deformations of l(2n+1,k) are described in order to compute the factorization index of some extensions of the type k⊂k⋈l(2n+1,k). We provide an example of such extension having an infinite factorization index.