Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras

For a perfect Lie algebra h we classify all Lie algebras containing h as a subalgebra of codimension 1. The automorphism groups of such Lie algebras are fully determined as subgroups of the semidirect product h⋉(k∗×AutLie(h)). In the non-perfect case the classification of these Lie algebras is a dif...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Agore, A.L., Militaru, G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146642
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras / A.L. Agore, G. Militaru // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146642
record_format dspace
spelling irk-123456789-1466422019-02-11T01:23:45Z Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras Agore, A.L. Militaru, G. For a perfect Lie algebra h we classify all Lie algebras containing h as a subalgebra of codimension 1. The automorphism groups of such Lie algebras are fully determined as subgroups of the semidirect product h⋉(k∗×AutLie(h)). In the non-perfect case the classification of these Lie algebras is a difficult task. Let l(2n+1,k) be the Lie algebra with the bracket [Ei,G]=Ei, [G,Fi]=Fi, for all i=1,…,n. We explicitly describe all Lie algebras containing l(2n+1,k) as a subalgebra of codimension 1 by computing all possible bicrossed products k⋈l(2n+1,k). They are parameterized by a set of matrices Mn(k)⁴×k²ⁿ⁺² which are explicitly determined. Several matched pair deformations of l(2n+1,k) are described in order to compute the factorization index of some extensions of the type k⊂k⋈l(2n+1,k). We provide an example of such extension having an infinite factorization index. 2014 Article Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras / A.L. Agore, G. Militaru // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B05; 17B55; 17B56 DOI:10.3842/SIGMA.2014.065 http://dspace.nbuv.gov.ua/handle/123456789/146642 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For a perfect Lie algebra h we classify all Lie algebras containing h as a subalgebra of codimension 1. The automorphism groups of such Lie algebras are fully determined as subgroups of the semidirect product h⋉(k∗×AutLie(h)). In the non-perfect case the classification of these Lie algebras is a difficult task. Let l(2n+1,k) be the Lie algebra with the bracket [Ei,G]=Ei, [G,Fi]=Fi, for all i=1,…,n. We explicitly describe all Lie algebras containing l(2n+1,k) as a subalgebra of codimension 1 by computing all possible bicrossed products k⋈l(2n+1,k). They are parameterized by a set of matrices Mn(k)⁴×k²ⁿ⁺² which are explicitly determined. Several matched pair deformations of l(2n+1,k) are described in order to compute the factorization index of some extensions of the type k⊂k⋈l(2n+1,k). We provide an example of such extension having an infinite factorization index.
format Article
author Agore, A.L.
Militaru, G.
spellingShingle Agore, A.L.
Militaru, G.
Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Agore, A.L.
Militaru, G.
author_sort Agore, A.L.
title Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras
title_short Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras
title_full Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras
title_fullStr Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras
title_full_unstemmed Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras
title_sort bicrossed products, matched pair deformations and the factorization index for lie algebras
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146642
citation_txt Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras / A.L. Agore, G. Militaru // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 22 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT agoreal bicrossedproductsmatchedpairdeformationsandthefactorizationindexforliealgebras
AT militarug bicrossedproductsmatchedpairdeformationsandthefactorizationindexforliealgebras
first_indexed 2023-05-20T17:25:19Z
last_indexed 2023-05-20T17:25:19Z
_version_ 1796153257345679360