Non-Commutative Resistance Networks

In the setting of finite-dimensional C*-algebras A we define what we call a Riemannian metric for A, which when A is commutative is very closely related to a finite resistance network. We explore the relationship with Dirichlet forms and corresponding seminorms that are Markov and Leibniz, with corr...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Rieffel, M.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146653
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Non-Commutative Resistance Networks / M.A. Rieffel // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 46 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146653
record_format dspace
spelling irk-123456789-1466532019-02-11T01:24:30Z Non-Commutative Resistance Networks Rieffel, M.A. In the setting of finite-dimensional C*-algebras A we define what we call a Riemannian metric for A, which when A is commutative is very closely related to a finite resistance network. We explore the relationship with Dirichlet forms and corresponding seminorms that are Markov and Leibniz, with corresponding matricial structure and metric on the state space. We also examine associated Laplace and Dirac operators, quotient energy seminorms, resistance distance, and the relationship with standard deviation. 2014 Article Non-Commutative Resistance Networks / M.A. Rieffel // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 46 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 46L87; 46L57; 58B34 DOI:10.3842/SIGMA.2014.064 http://dspace.nbuv.gov.ua/handle/123456789/146653 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In the setting of finite-dimensional C*-algebras A we define what we call a Riemannian metric for A, which when A is commutative is very closely related to a finite resistance network. We explore the relationship with Dirichlet forms and corresponding seminorms that are Markov and Leibniz, with corresponding matricial structure and metric on the state space. We also examine associated Laplace and Dirac operators, quotient energy seminorms, resistance distance, and the relationship with standard deviation.
format Article
author Rieffel, M.A.
spellingShingle Rieffel, M.A.
Non-Commutative Resistance Networks
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Rieffel, M.A.
author_sort Rieffel, M.A.
title Non-Commutative Resistance Networks
title_short Non-Commutative Resistance Networks
title_full Non-Commutative Resistance Networks
title_fullStr Non-Commutative Resistance Networks
title_full_unstemmed Non-Commutative Resistance Networks
title_sort non-commutative resistance networks
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146653
citation_txt Non-Commutative Resistance Networks / M.A. Rieffel // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 46 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT rieffelma noncommutativeresistancenetworks
first_indexed 2023-05-20T17:25:21Z
last_indexed 2023-05-20T17:25:21Z
_version_ 1796153258516938752