Deformations of the Canonical Commutation Relations and Metric Structures

Using Connes distance formula in noncommutative geometry, it is possible to retrieve the Euclidean distance from the canonical commutation relations of quantum mechanics. In this note, we study modifications of the distance induced by a deformation of the position-momentum commutation relations. We...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: D'Andrea, F., Lizzi, F., Martinetti, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146655
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Deformations of the Canonical Commutation Relations and Metric Structures / F. D'Andrea, F. Lizzi, P. Martinetti // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 33 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146655
record_format dspace
spelling irk-123456789-1466552019-02-11T01:24:47Z Deformations of the Canonical Commutation Relations and Metric Structures D'Andrea, F. Lizzi, F. Martinetti, P. Using Connes distance formula in noncommutative geometry, it is possible to retrieve the Euclidean distance from the canonical commutation relations of quantum mechanics. In this note, we study modifications of the distance induced by a deformation of the position-momentum commutation relations. We first consider the deformation coming from a cut-off in momentum space, then the one obtained by replacing the usual derivative on the real line with the h- and q-derivatives, respectively. In these various examples, some points turn out to be at infinite distance. We then show (on both the real line and the circle) how to approximate points by extended distributions that remain at finite distance. On the circle, this provides an explicit example of computation of the Wasserstein distance. 2014 Article Deformations of the Canonical Commutation Relations and Metric Structures / F. D'Andrea, F. Lizzi, P. Martinetti // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 33 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58B34; 46L87 DOI:10.3842/SIGMA.2014.062 http://dspace.nbuv.gov.ua/handle/123456789/146655 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Using Connes distance formula in noncommutative geometry, it is possible to retrieve the Euclidean distance from the canonical commutation relations of quantum mechanics. In this note, we study modifications of the distance induced by a deformation of the position-momentum commutation relations. We first consider the deformation coming from a cut-off in momentum space, then the one obtained by replacing the usual derivative on the real line with the h- and q-derivatives, respectively. In these various examples, some points turn out to be at infinite distance. We then show (on both the real line and the circle) how to approximate points by extended distributions that remain at finite distance. On the circle, this provides an explicit example of computation of the Wasserstein distance.
format Article
author D'Andrea, F.
Lizzi, F.
Martinetti, P.
spellingShingle D'Andrea, F.
Lizzi, F.
Martinetti, P.
Deformations of the Canonical Commutation Relations and Metric Structures
Symmetry, Integrability and Geometry: Methods and Applications
author_facet D'Andrea, F.
Lizzi, F.
Martinetti, P.
author_sort D'Andrea, F.
title Deformations of the Canonical Commutation Relations and Metric Structures
title_short Deformations of the Canonical Commutation Relations and Metric Structures
title_full Deformations of the Canonical Commutation Relations and Metric Structures
title_fullStr Deformations of the Canonical Commutation Relations and Metric Structures
title_full_unstemmed Deformations of the Canonical Commutation Relations and Metric Structures
title_sort deformations of the canonical commutation relations and metric structures
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146655
citation_txt Deformations of the Canonical Commutation Relations and Metric Structures / F. D'Andrea, F. Lizzi, P. Martinetti // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 33 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT dandreaf deformationsofthecanonicalcommutationrelationsandmetricstructures
AT lizzif deformationsofthecanonicalcommutationrelationsandmetricstructures
AT martinettip deformationsofthecanonicalcommutationrelationsandmetricstructures
first_indexed 2023-05-20T17:25:21Z
last_indexed 2023-05-20T17:25:21Z
_version_ 1796153258728751104