Integrable Systems Related to Deformed so(5)
We investigate a family of integrable Hamiltonian systems on Lie-Poisson spaces L+(5) dual to Lie algebras soλ,α(5) being two-parameter deformations of so(5). We integrate corresponding Hamiltonian equations on L+(5) and T∗R⁵ by quadratures as well as discuss their possible physical interpretation....
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146683 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Integrable Systems Related to Deformed so(5) / A. Dobrogowska, A. Odzijewicz // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146683 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1466832019-02-11T01:24:49Z Integrable Systems Related to Deformed so(5) Dobrogowska, A. Odzijewicz, A. We investigate a family of integrable Hamiltonian systems on Lie-Poisson spaces L+(5) dual to Lie algebras soλ,α(5) being two-parameter deformations of so(5). We integrate corresponding Hamiltonian equations on L+(5) and T∗R⁵ by quadratures as well as discuss their possible physical interpretation. 2014 Article Integrable Systems Related to Deformed so(5) / A. Dobrogowska, A. Odzijewicz // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 70H06; 37J15; 53D17 DOI:10.3842/SIGMA.2014.056 http://dspace.nbuv.gov.ua/handle/123456789/146683 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We investigate a family of integrable Hamiltonian systems on Lie-Poisson spaces L+(5) dual to Lie algebras soλ,α(5) being two-parameter deformations of so(5). We integrate corresponding Hamiltonian equations on L+(5) and T∗R⁵ by quadratures as well as discuss their possible physical interpretation. |
format |
Article |
author |
Dobrogowska, A. Odzijewicz, A. |
spellingShingle |
Dobrogowska, A. Odzijewicz, A. Integrable Systems Related to Deformed so(5) Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Dobrogowska, A. Odzijewicz, A. |
author_sort |
Dobrogowska, A. |
title |
Integrable Systems Related to Deformed so(5) |
title_short |
Integrable Systems Related to Deformed so(5) |
title_full |
Integrable Systems Related to Deformed so(5) |
title_fullStr |
Integrable Systems Related to Deformed so(5) |
title_full_unstemmed |
Integrable Systems Related to Deformed so(5) |
title_sort |
integrable systems related to deformed so(5) |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146683 |
citation_txt |
Integrable Systems Related to Deformed so(5) / A. Dobrogowska, A. Odzijewicz // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 21 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT dobrogowskaa integrablesystemsrelatedtodeformedso5 AT odzijewicza integrablesystemsrelatedtodeformedso5 |
first_indexed |
2023-05-20T17:25:24Z |
last_indexed |
2023-05-20T17:25:24Z |
_version_ |
1796153260428492800 |