Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry
Certain ∗-semigroups are associated with the universal C∗-algebra generated by a partial isometry, which is itself the universal C∗-algebra of a ∗-semigroup. A fundamental role for a ∗-structure on a semigroup is emphasized, and ordered and matricially ordered ∗-semigroups are introduced, along with...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146684 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry / B. Brenken // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146684 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1466842019-02-11T01:24:25Z Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry Brenken, B. Certain ∗-semigroups are associated with the universal C∗-algebra generated by a partial isometry, which is itself the universal C∗-algebra of a ∗-semigroup. A fundamental role for a ∗-structure on a semigroup is emphasized, and ordered and matricially ordered ∗-semigroups are introduced, along with their universal C∗-algebras. The universal C∗-algebra generated by a partial isometry is isomorphic to a relative Cuntz-Pimsner C∗-algebra of a C∗-correspondence over the C∗-algebra of a matricially ordered ∗-semigroup. One may view the C∗-algebra of a partial isometry as the crossed product algebra associated with a dynamical system defined by a complete order map modelled by a partial isometry acting on a matricially ordered ∗-semigroup. 2014 Article Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry / B. Brenken // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 46L05; 46L08; 20M30; 06F05; 46L55 DOI:10.3842/SIGMA.2014.055 http://dspace.nbuv.gov.ua/handle/123456789/146684 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Certain ∗-semigroups are associated with the universal C∗-algebra generated by a partial isometry, which is itself the universal C∗-algebra of a ∗-semigroup. A fundamental role for a ∗-structure on a semigroup is emphasized, and ordered and matricially ordered ∗-semigroups are introduced, along with their universal C∗-algebras. The universal C∗-algebra generated by a partial isometry is isomorphic to a relative Cuntz-Pimsner C∗-algebra of a C∗-correspondence over the C∗-algebra of a matricially ordered ∗-semigroup. One may view the C∗-algebra of a partial isometry as the crossed product algebra associated with a dynamical system defined by a complete order map modelled by a partial isometry acting on a matricially ordered ∗-semigroup. |
format |
Article |
author |
Brenken, B. |
spellingShingle |
Brenken, B. Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Brenken, B. |
author_sort |
Brenken, B. |
title |
Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry |
title_short |
Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry |
title_full |
Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry |
title_fullStr |
Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry |
title_full_unstemmed |
Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry |
title_sort |
ordered ∗-semigroups and a c∗-correspondence for a partial isometry |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146684 |
citation_txt |
Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry / B. Brenken // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 20 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT brenkenb orderedsemigroupsandaccorrespondenceforapartialisometry |
first_indexed |
2023-05-20T17:25:24Z |
last_indexed |
2023-05-20T17:25:24Z |
_version_ |
1796153260533350400 |