Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry

Certain ∗-semigroups are associated with the universal C∗-algebra generated by a partial isometry, which is itself the universal C∗-algebra of a ∗-semigroup. A fundamental role for a ∗-structure on a semigroup is emphasized, and ordered and matricially ordered ∗-semigroups are introduced, along with...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Brenken, B.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146684
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry / B. Brenken // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146684
record_format dspace
spelling irk-123456789-1466842019-02-11T01:24:25Z Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry Brenken, B. Certain ∗-semigroups are associated with the universal C∗-algebra generated by a partial isometry, which is itself the universal C∗-algebra of a ∗-semigroup. A fundamental role for a ∗-structure on a semigroup is emphasized, and ordered and matricially ordered ∗-semigroups are introduced, along with their universal C∗-algebras. The universal C∗-algebra generated by a partial isometry is isomorphic to a relative Cuntz-Pimsner C∗-algebra of a C∗-correspondence over the C∗-algebra of a matricially ordered ∗-semigroup. One may view the C∗-algebra of a partial isometry as the crossed product algebra associated with a dynamical system defined by a complete order map modelled by a partial isometry acting on a matricially ordered ∗-semigroup. 2014 Article Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry / B. Brenken // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 20 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 46L05; 46L08; 20M30; 06F05; 46L55 DOI:10.3842/SIGMA.2014.055 http://dspace.nbuv.gov.ua/handle/123456789/146684 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Certain ∗-semigroups are associated with the universal C∗-algebra generated by a partial isometry, which is itself the universal C∗-algebra of a ∗-semigroup. A fundamental role for a ∗-structure on a semigroup is emphasized, and ordered and matricially ordered ∗-semigroups are introduced, along with their universal C∗-algebras. The universal C∗-algebra generated by a partial isometry is isomorphic to a relative Cuntz-Pimsner C∗-algebra of a C∗-correspondence over the C∗-algebra of a matricially ordered ∗-semigroup. One may view the C∗-algebra of a partial isometry as the crossed product algebra associated with a dynamical system defined by a complete order map modelled by a partial isometry acting on a matricially ordered ∗-semigroup.
format Article
author Brenken, B.
spellingShingle Brenken, B.
Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Brenken, B.
author_sort Brenken, B.
title Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry
title_short Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry
title_full Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry
title_fullStr Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry
title_full_unstemmed Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry
title_sort ordered ∗-semigroups and a c∗-correspondence for a partial isometry
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146684
citation_txt Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry / B. Brenken // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 20 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT brenkenb orderedsemigroupsandaccorrespondenceforapartialisometry
first_indexed 2023-05-20T17:25:24Z
last_indexed 2023-05-20T17:25:24Z
_version_ 1796153260533350400