Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions

We consider the deformation of the Poincaré group in 2+1 dimensions into the quantum double of the Lorentz group and construct Lorentz-covariant momentum-space formulations of the irreducible representations describing massive particles with spin 0, 1/2 and 1 in the deformed theory. We discuss ways...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Schroers, B.J., Wilhelm, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146686
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions / B.J. Schroers, M. Wilhelm // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 45 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We consider the deformation of the Poincaré group in 2+1 dimensions into the quantum double of the Lorentz group and construct Lorentz-covariant momentum-space formulations of the irreducible representations describing massive particles with spin 0, 1/2 and 1 in the deformed theory. We discuss ways of obtaining non-commutative versions of relativistic wave equations like the Klein-Gordon, Dirac and Proca equations in 2+1 dimensions by applying a suitably defined Fourier transform, and point out the relation between non-commutative Dirac equations and the exponentiated Dirac operator considered by Atiyah and Moore.