Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions

We consider the deformation of the Poincaré group in 2+1 dimensions into the quantum double of the Lorentz group and construct Lorentz-covariant momentum-space formulations of the irreducible representations describing massive particles with spin 0, 1/2 and 1 in the deformed theory. We discuss ways...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Schroers, B.J., Wilhelm, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146686
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions / B.J. Schroers, M. Wilhelm // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 45 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146686
record_format dspace
spelling irk-123456789-1466862019-02-11T01:24:29Z Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions Schroers, B.J. Wilhelm, M. We consider the deformation of the Poincaré group in 2+1 dimensions into the quantum double of the Lorentz group and construct Lorentz-covariant momentum-space formulations of the irreducible representations describing massive particles with spin 0, 1/2 and 1 in the deformed theory. We discuss ways of obtaining non-commutative versions of relativistic wave equations like the Klein-Gordon, Dirac and Proca equations in 2+1 dimensions by applying a suitably defined Fourier transform, and point out the relation between non-commutative Dirac equations and the exponentiated Dirac operator considered by Atiyah and Moore. 2014 Article Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions / B.J. Schroers, M. Wilhelm // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 45 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 83A99; 81R20; 81R50; 81R60 DOI:10.3842/SIGMA.2014.053 http://dspace.nbuv.gov.ua/handle/123456789/146686 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider the deformation of the Poincaré group in 2+1 dimensions into the quantum double of the Lorentz group and construct Lorentz-covariant momentum-space formulations of the irreducible representations describing massive particles with spin 0, 1/2 and 1 in the deformed theory. We discuss ways of obtaining non-commutative versions of relativistic wave equations like the Klein-Gordon, Dirac and Proca equations in 2+1 dimensions by applying a suitably defined Fourier transform, and point out the relation between non-commutative Dirac equations and the exponentiated Dirac operator considered by Atiyah and Moore.
format Article
author Schroers, B.J.
Wilhelm, M.
spellingShingle Schroers, B.J.
Wilhelm, M.
Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Schroers, B.J.
Wilhelm, M.
author_sort Schroers, B.J.
title Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions
title_short Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions
title_full Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions
title_fullStr Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions
title_full_unstemmed Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions
title_sort towards non-commutative deformations of relativistic wave equations in 2+1 dimensions
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146686
citation_txt Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions / B.J. Schroers, M. Wilhelm // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 45 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT schroersbj towardsnoncommutativedeformationsofrelativisticwaveequationsin21dimensions
AT wilhelmm towardsnoncommutativedeformationsofrelativisticwaveequationsin21dimensions
first_indexed 2023-05-20T17:25:25Z
last_indexed 2023-05-20T17:25:25Z
_version_ 1796153260744114176