Twisted (2+1) κ-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes
We construct the full quantum algebra, the corresponding Poisson-Lie structure and the associated quantum spacetime for a family of quantum deformations of the isometry algebras of the (2+1)-dimensional anti-de Sitter (AdS), de Sitter (dS) and Minkowski spaces. These deformations correspond to a Dri...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146687 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Twisted (2+1) κ-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes / A. Ballesteros, F.J. Herranz, C. Meusburger, P. Naranjo // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 65 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146687 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1466872019-02-11T01:25:10Z Twisted (2+1) κ-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes Ballesteros, A. Herranz, F.J. Meusburger, C. Naranjo, P. We construct the full quantum algebra, the corresponding Poisson-Lie structure and the associated quantum spacetime for a family of quantum deformations of the isometry algebras of the (2+1)-dimensional anti-de Sitter (AdS), de Sitter (dS) and Minkowski spaces. These deformations correspond to a Drinfel'd double structure on the isometry algebras that are motivated by their role in (2+1)-gravity. The construction includes the cosmological constant Λ as a deformation parameter, which allows one to treat these cases in a common framework and to obtain a twisted version of both space- and time-like κ-AdS and dS quantum algebras; their flat limit Λ→0 leads to a twisted quantum Poincaré algebra. The resulting non-commutative spacetime is a nonlinear Λ-deformation of the κ-Minkowski one plus an additional contribution generated by the twist. For the AdS case, we relate this quantum deformation to two copies of the standard (Drinfel'd-Jimbo) quantum deformation of the Lorentz group in three dimensions, which allows one to determine the impact of the twist. 2014 Article Twisted (2+1) κ-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes / A. Ballesteros, F.J. Herranz, C. Meusburger, P. Naranjo // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 65 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 16T20; 81R50; 81R60 DOI:10.3842/SIGMA.2014.052 http://dspace.nbuv.gov.ua/handle/123456789/146687 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We construct the full quantum algebra, the corresponding Poisson-Lie structure and the associated quantum spacetime for a family of quantum deformations of the isometry algebras of the (2+1)-dimensional anti-de Sitter (AdS), de Sitter (dS) and Minkowski spaces. These deformations correspond to a Drinfel'd double structure on the isometry algebras that are motivated by their role in (2+1)-gravity. The construction includes the cosmological constant Λ as a deformation parameter, which allows one to treat these cases in a common framework and to obtain a twisted version of both space- and time-like κ-AdS and dS quantum algebras; their flat limit Λ→0 leads to a twisted quantum Poincaré algebra. The resulting non-commutative spacetime is a nonlinear Λ-deformation of the κ-Minkowski one plus an additional contribution generated by the twist. For the AdS case, we relate this quantum deformation to two copies of the standard (Drinfel'd-Jimbo) quantum deformation of the Lorentz group in three dimensions, which allows one to determine the impact of the twist. |
format |
Article |
author |
Ballesteros, A. Herranz, F.J. Meusburger, C. Naranjo, P. |
spellingShingle |
Ballesteros, A. Herranz, F.J. Meusburger, C. Naranjo, P. Twisted (2+1) κ-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Ballesteros, A. Herranz, F.J. Meusburger, C. Naranjo, P. |
author_sort |
Ballesteros, A. |
title |
Twisted (2+1) κ-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes |
title_short |
Twisted (2+1) κ-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes |
title_full |
Twisted (2+1) κ-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes |
title_fullStr |
Twisted (2+1) κ-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes |
title_full_unstemmed |
Twisted (2+1) κ-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes |
title_sort |
twisted (2+1) κ-ads algebra, drinfel'd doubles and non-commutative spacetimes |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146687 |
citation_txt |
Twisted (2+1) κ-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes / A. Ballesteros, F.J. Herranz, C. Meusburger, P. Naranjo // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 65 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT ballesterosa twisted21kadsalgebradrinfelddoublesandnoncommutativespacetimes AT herranzfj twisted21kadsalgebradrinfelddoublesandnoncommutativespacetimes AT meusburgerc twisted21kadsalgebradrinfelddoublesandnoncommutativespacetimes AT naranjop twisted21kadsalgebradrinfelddoublesandnoncommutativespacetimes |
first_indexed |
2023-05-20T17:25:25Z |
last_indexed |
2023-05-20T17:25:25Z |
_version_ |
1796153260851068928 |