Gravity in Twistor Space and its Grassmannian Formulation

We prove the formula for the complete tree-level S-matrix of N=8 supergravity recently conjectured by two of the authors. The proof proceeds by showing that the new formula satisfies the same BCFW recursion relations that physical amplitudes are known to satisfy, with the same initial conditions. As...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Cachazo, F., Mason, L.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146692
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Gravity in Twistor Space and its Grassmannian Formulation / F. Cachazo, L. Mason, D. Skinner // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 36 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We prove the formula for the complete tree-level S-matrix of N=8 supergravity recently conjectured by two of the authors. The proof proceeds by showing that the new formula satisfies the same BCFW recursion relations that physical amplitudes are known to satisfy, with the same initial conditions. As part of the proof, the behavior of the new formula under large BCFW deformations is studied. An unexpected bonus of the analysis is a very straightforward proof of the enigmatic 1/z⁻² behavior of gravity. In addition, we provide a description of gravity amplitudes as a multidimensional contour integral over a Grassmannian.