Gravity in Twistor Space and its Grassmannian Formulation
We prove the formula for the complete tree-level S-matrix of N=8 supergravity recently conjectured by two of the authors. The proof proceeds by showing that the new formula satisfies the same BCFW recursion relations that physical amplitudes are known to satisfy, with the same initial conditions. As...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146692 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Gravity in Twistor Space and its Grassmannian Formulation / F. Cachazo, L. Mason, D. Skinner // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 36 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We prove the formula for the complete tree-level S-matrix of N=8 supergravity recently conjectured by two of the authors. The proof proceeds by showing that the new formula satisfies the same BCFW recursion relations that physical amplitudes are known to satisfy, with the same initial conditions. As part of the proof, the behavior of the new formula under large BCFW deformations is studied. An unexpected bonus of the analysis is a very straightforward proof of the enigmatic 1/z⁻² behavior of gravity. In addition, we provide a description of gravity amplitudes as a multidimensional contour integral over a Grassmannian. |
---|