Gravity in Twistor Space and its Grassmannian Formulation

We prove the formula for the complete tree-level S-matrix of N=8 supergravity recently conjectured by two of the authors. The proof proceeds by showing that the new formula satisfies the same BCFW recursion relations that physical amplitudes are known to satisfy, with the same initial conditions. As...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Cachazo, F., Mason, L.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146692
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Gravity in Twistor Space and its Grassmannian Formulation / F. Cachazo, L. Mason, D. Skinner // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 36 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146692
record_format dspace
spelling irk-123456789-1466922019-02-11T01:25:11Z Gravity in Twistor Space and its Grassmannian Formulation Cachazo, F. Mason, L. We prove the formula for the complete tree-level S-matrix of N=8 supergravity recently conjectured by two of the authors. The proof proceeds by showing that the new formula satisfies the same BCFW recursion relations that physical amplitudes are known to satisfy, with the same initial conditions. As part of the proof, the behavior of the new formula under large BCFW deformations is studied. An unexpected bonus of the analysis is a very straightforward proof of the enigmatic 1/z⁻² behavior of gravity. In addition, we provide a description of gravity amplitudes as a multidimensional contour integral over a Grassmannian. 2014 Article Gravity in Twistor Space and its Grassmannian Formulation / F. Cachazo, L. Mason, D. Skinner // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 36 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53C28 DOI:10.3842/SIGMA.2014.051 http://dspace.nbuv.gov.ua/handle/123456789/146692 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We prove the formula for the complete tree-level S-matrix of N=8 supergravity recently conjectured by two of the authors. The proof proceeds by showing that the new formula satisfies the same BCFW recursion relations that physical amplitudes are known to satisfy, with the same initial conditions. As part of the proof, the behavior of the new formula under large BCFW deformations is studied. An unexpected bonus of the analysis is a very straightforward proof of the enigmatic 1/z⁻² behavior of gravity. In addition, we provide a description of gravity amplitudes as a multidimensional contour integral over a Grassmannian.
format Article
author Cachazo, F.
Mason, L.
spellingShingle Cachazo, F.
Mason, L.
Gravity in Twistor Space and its Grassmannian Formulation
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Cachazo, F.
Mason, L.
author_sort Cachazo, F.
title Gravity in Twistor Space and its Grassmannian Formulation
title_short Gravity in Twistor Space and its Grassmannian Formulation
title_full Gravity in Twistor Space and its Grassmannian Formulation
title_fullStr Gravity in Twistor Space and its Grassmannian Formulation
title_full_unstemmed Gravity in Twistor Space and its Grassmannian Formulation
title_sort gravity in twistor space and its grassmannian formulation
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146692
citation_txt Gravity in Twistor Space and its Grassmannian Formulation / F. Cachazo, L. Mason, D. Skinner // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 36 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT cachazof gravityintwistorspaceanditsgrassmannianformulation
AT masonl gravityintwistorspaceanditsgrassmannianformulation
first_indexed 2023-05-20T17:25:26Z
last_indexed 2023-05-20T17:25:26Z
_version_ 1796153261061832704