Geometric Aspects of the Painlevé Equations PIII(D₆) and PIII(D₇)

The Riemann-Hilbert approach for the equations PIII(D6) and PIII(D7) is studied in detail, involving moduli spaces for connections and monodromy data, Okamoto-Painlevé varieties, the Painlevé property, special solutions and explicit Bäcklund transformations.

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Marius van der Put, Top, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146693
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Geometric Aspects of the Painlevé Equations PIII(D₆) and PIII(D₇) / Marius van der Put, J. Top // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146693
record_format dspace
spelling irk-123456789-1466932019-02-11T01:24:32Z Geometric Aspects of the Painlevé Equations PIII(D₆) and PIII(D₇) Marius van der Put Top, J. The Riemann-Hilbert approach for the equations PIII(D6) and PIII(D7) is studied in detail, involving moduli spaces for connections and monodromy data, Okamoto-Painlevé varieties, the Painlevé property, special solutions and explicit Bäcklund transformations. 2014 Article Geometric Aspects of the Painlevé Equations PIII(D₆) and PIII(D₇) / Marius van der Put, J. Top // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 13 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 14D20; 14D22; 34M55 DOI:10.3842/SIGMA.2014.050 http://dspace.nbuv.gov.ua/handle/123456789/146693 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The Riemann-Hilbert approach for the equations PIII(D6) and PIII(D7) is studied in detail, involving moduli spaces for connections and monodromy data, Okamoto-Painlevé varieties, the Painlevé property, special solutions and explicit Bäcklund transformations.
format Article
author Marius van der Put
Top, J.
spellingShingle Marius van der Put
Top, J.
Geometric Aspects of the Painlevé Equations PIII(D₆) and PIII(D₇)
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Marius van der Put
Top, J.
author_sort Marius van der Put
title Geometric Aspects of the Painlevé Equations PIII(D₆) and PIII(D₇)
title_short Geometric Aspects of the Painlevé Equations PIII(D₆) and PIII(D₇)
title_full Geometric Aspects of the Painlevé Equations PIII(D₆) and PIII(D₇)
title_fullStr Geometric Aspects of the Painlevé Equations PIII(D₆) and PIII(D₇)
title_full_unstemmed Geometric Aspects of the Painlevé Equations PIII(D₆) and PIII(D₇)
title_sort geometric aspects of the painlevé equations piii(d₆) and piii(d₇)
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146693
citation_txt Geometric Aspects of the Painlevé Equations PIII(D₆) and PIII(D₇) / Marius van der Put, J. Top // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 13 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT mariusvanderput geometricaspectsofthepainleveequationspiiid6andpiiid7
AT topj geometricaspectsofthepainleveequationspiiid6andpiiid7
first_indexed 2023-05-20T17:25:26Z
last_indexed 2023-05-20T17:25:26Z
_version_ 1796153261167738880