Local Proof of Algebraic Characterization of Free Actions

Let G be a compact Hausdorff topological group acting on a compact Hausdorff topological space X. Within the C∗-algebra C(X) of all continuous complex-valued functions on X, there is the Peter-Weyl algebra PG(X) which is the (purely algebraic) direct sum of the isotypical components for the action o...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Baum, P.F., Hajac, P.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146694
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Local Proof of Algebraic Characterization of Free Actions / P.F. Baum, P.M. Hajac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146694
record_format dspace
spelling irk-123456789-1466942019-02-12T01:25:02Z Local Proof of Algebraic Characterization of Free Actions Baum, P.F. Hajac, P.M. Let G be a compact Hausdorff topological group acting on a compact Hausdorff topological space X. Within the C∗-algebra C(X) of all continuous complex-valued functions on X, there is the Peter-Weyl algebra PG(X) which is the (purely algebraic) direct sum of the isotypical components for the action of G on C(X). We prove that the action of G on X is free if and only if the canonical map PG(X)⊗C(X/G)PG(X)→PG(X)⊗O(G) is bijective. Here both tensor products are purely algebraic, and O(G) denotes the Hopf algebra of ''polynomial'' functions on G. 2014 Article Local Proof of Algebraic Characterization of Free Actions / P.F. Baum, P.M. Hajac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 22C05; 55R10; 57S05; 57S10 DOI:10.3842/SIGMA.2014.060 http://dspace.nbuv.gov.ua/handle/123456789/146694 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let G be a compact Hausdorff topological group acting on a compact Hausdorff topological space X. Within the C∗-algebra C(X) of all continuous complex-valued functions on X, there is the Peter-Weyl algebra PG(X) which is the (purely algebraic) direct sum of the isotypical components for the action of G on C(X). We prove that the action of G on X is free if and only if the canonical map PG(X)⊗C(X/G)PG(X)→PG(X)⊗O(G) is bijective. Here both tensor products are purely algebraic, and O(G) denotes the Hopf algebra of ''polynomial'' functions on G.
format Article
author Baum, P.F.
Hajac, P.M.
spellingShingle Baum, P.F.
Hajac, P.M.
Local Proof of Algebraic Characterization of Free Actions
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Baum, P.F.
Hajac, P.M.
author_sort Baum, P.F.
title Local Proof of Algebraic Characterization of Free Actions
title_short Local Proof of Algebraic Characterization of Free Actions
title_full Local Proof of Algebraic Characterization of Free Actions
title_fullStr Local Proof of Algebraic Characterization of Free Actions
title_full_unstemmed Local Proof of Algebraic Characterization of Free Actions
title_sort local proof of algebraic characterization of free actions
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146694
citation_txt Local Proof of Algebraic Characterization of Free Actions / P.F. Baum, P.M. Hajac // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT baumpf localproofofalgebraiccharacterizationoffreeactions
AT hajacpm localproofofalgebraiccharacterizationoffreeactions
first_indexed 2023-05-20T17:25:26Z
last_indexed 2023-05-20T17:25:26Z
_version_ 1796153261272596480