Schur Positivity and Kirillov-Reshetikhin Modules
In this note, inspired by the proof of the Kirillov-Reshetikhin conjecture, we consider tensor products of Kirillov-Reshetikhin modules of a fixed node and various level. We fix a positive integer and attach to each of its partitions such a tensor product. We show that there exists an embedding of t...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146696 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Schur Positivity and Kirillov-Reshetikhin Modules / G. Fourier, D. Hernandez // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146696 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1466962019-02-11T01:24:33Z Schur Positivity and Kirillov-Reshetikhin Modules Fourier, G. Hernandez, D. In this note, inspired by the proof of the Kirillov-Reshetikhin conjecture, we consider tensor products of Kirillov-Reshetikhin modules of a fixed node and various level. We fix a positive integer and attach to each of its partitions such a tensor product. We show that there exists an embedding of the tensor products, with respect to the classical structure, along with the reverse dominance relation on the set of partitions. 2014 Article Schur Positivity and Kirillov-Reshetikhin Modules / G. Fourier, D. Hernandez // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B10; 17B37; 05E05 DOI:10.3842/SIGMA.2014.058 http://dspace.nbuv.gov.ua/handle/123456789/146696 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this note, inspired by the proof of the Kirillov-Reshetikhin conjecture, we consider tensor products of Kirillov-Reshetikhin modules of a fixed node and various level. We fix a positive integer and attach to each of its partitions such a tensor product. We show that there exists an embedding of the tensor products, with respect to the classical structure, along with the reverse dominance relation on the set of partitions. |
format |
Article |
author |
Fourier, G. Hernandez, D. |
spellingShingle |
Fourier, G. Hernandez, D. Schur Positivity and Kirillov-Reshetikhin Modules Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Fourier, G. Hernandez, D. |
author_sort |
Fourier, G. |
title |
Schur Positivity and Kirillov-Reshetikhin Modules |
title_short |
Schur Positivity and Kirillov-Reshetikhin Modules |
title_full |
Schur Positivity and Kirillov-Reshetikhin Modules |
title_fullStr |
Schur Positivity and Kirillov-Reshetikhin Modules |
title_full_unstemmed |
Schur Positivity and Kirillov-Reshetikhin Modules |
title_sort |
schur positivity and kirillov-reshetikhin modules |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146696 |
citation_txt |
Schur Positivity and Kirillov-Reshetikhin Modules / G. Fourier, D. Hernandez // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT fourierg schurpositivityandkirillovreshetikhinmodules AT hernandezd schurpositivityandkirillovreshetikhinmodules |
first_indexed |
2023-05-20T17:25:26Z |
last_indexed |
2023-05-20T17:25:26Z |
_version_ |
1796153261483360256 |