Schur Positivity and Kirillov-Reshetikhin Modules

In this note, inspired by the proof of the Kirillov-Reshetikhin conjecture, we consider tensor products of Kirillov-Reshetikhin modules of a fixed node and various level. We fix a positive integer and attach to each of its partitions such a tensor product. We show that there exists an embedding of t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Fourier, G., Hernandez, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146696
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Schur Positivity and Kirillov-Reshetikhin Modules / G. Fourier, D. Hernandez // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146696
record_format dspace
spelling irk-123456789-1466962019-02-11T01:24:33Z Schur Positivity and Kirillov-Reshetikhin Modules Fourier, G. Hernandez, D. In this note, inspired by the proof of the Kirillov-Reshetikhin conjecture, we consider tensor products of Kirillov-Reshetikhin modules of a fixed node and various level. We fix a positive integer and attach to each of its partitions such a tensor product. We show that there exists an embedding of the tensor products, with respect to the classical structure, along with the reverse dominance relation on the set of partitions. 2014 Article Schur Positivity and Kirillov-Reshetikhin Modules / G. Fourier, D. Hernandez // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B10; 17B37; 05E05 DOI:10.3842/SIGMA.2014.058 http://dspace.nbuv.gov.ua/handle/123456789/146696 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this note, inspired by the proof of the Kirillov-Reshetikhin conjecture, we consider tensor products of Kirillov-Reshetikhin modules of a fixed node and various level. We fix a positive integer and attach to each of its partitions such a tensor product. We show that there exists an embedding of the tensor products, with respect to the classical structure, along with the reverse dominance relation on the set of partitions.
format Article
author Fourier, G.
Hernandez, D.
spellingShingle Fourier, G.
Hernandez, D.
Schur Positivity and Kirillov-Reshetikhin Modules
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Fourier, G.
Hernandez, D.
author_sort Fourier, G.
title Schur Positivity and Kirillov-Reshetikhin Modules
title_short Schur Positivity and Kirillov-Reshetikhin Modules
title_full Schur Positivity and Kirillov-Reshetikhin Modules
title_fullStr Schur Positivity and Kirillov-Reshetikhin Modules
title_full_unstemmed Schur Positivity and Kirillov-Reshetikhin Modules
title_sort schur positivity and kirillov-reshetikhin modules
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146696
citation_txt Schur Positivity and Kirillov-Reshetikhin Modules / G. Fourier, D. Hernandez // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 18 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT fourierg schurpositivityandkirillovreshetikhinmodules
AT hernandezd schurpositivityandkirillovreshetikhinmodules
first_indexed 2023-05-20T17:25:26Z
last_indexed 2023-05-20T17:25:26Z
_version_ 1796153261483360256