Integration of Cocycles and Lefschetz Number Formulae for Differential Operators

Let E be a holomorphic vector bundle on a complex manifold X such that dimCX=n. Given any continuous, basic Hochschild 2n-cocycle ψ2n of the algebra Diffn of formal holomorphic differential operators, one obtains a 2n-form fε,ψ2n(D) from any holomorphic differential operator D on E. We apply our ear...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Ramadoss, A.C.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146775
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Integration of Cocycles and Lefschetz Number Formulae for Differential Operators / A.C. Ramadoss // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146775
record_format dspace
spelling irk-123456789-1467752019-02-12T01:23:38Z Integration of Cocycles and Lefschetz Number Formulae for Differential Operators Ramadoss, A.C. Let E be a holomorphic vector bundle on a complex manifold X such that dimCX=n. Given any continuous, basic Hochschild 2n-cocycle ψ2n of the algebra Diffn of formal holomorphic differential operators, one obtains a 2n-form fε,ψ2n(D) from any holomorphic differential operator D on E. We apply our earlier results [J. Noncommut. Geom. 2 (2008), 405-448; J. Noncommut. Geom. 3 (2009), 27-45] to show that ∫X fε,ψ2n(D) gives the Lefschetz number of D upto a constant independent of X and ε. In addition, we obtain a ''local'' result generalizing the above statement. When ψ2n is the cocycle from [Duke Math. J. 127 (2005), 487-517], we obtain a new proof as well as a generalization of the Lefschetz number theorem of Engeli-Felder. We also obtain an analogous ''local'' result pertaining to B. Shoikhet's construction of the holomorphic noncommutative residue of a differential operator for trivial vector bundles on complex parallelizable manifolds. This enables us to give a rigorous construction of the holomorphic noncommutative residue of D defined by B. Shoikhet when E is an arbitrary vector bundle on an arbitrary compact complex manifold X. Our local result immediately yields a proof of a generalization of Conjecture 3.3 of [Geom. Funct. Anal. 11 (2001), 1096-1124]. 2011 Article Integration of Cocycles and Lefschetz Number Formulae for Differential Operators / A.C. Ramadoss // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 23 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 16E40; 32L05; 32C38; 58J42 DOI:10.3842/SIGMA.2011.010 http://dspace.nbuv.gov.ua/handle/123456789/146775 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let E be a holomorphic vector bundle on a complex manifold X such that dimCX=n. Given any continuous, basic Hochschild 2n-cocycle ψ2n of the algebra Diffn of formal holomorphic differential operators, one obtains a 2n-form fε,ψ2n(D) from any holomorphic differential operator D on E. We apply our earlier results [J. Noncommut. Geom. 2 (2008), 405-448; J. Noncommut. Geom. 3 (2009), 27-45] to show that ∫X fε,ψ2n(D) gives the Lefschetz number of D upto a constant independent of X and ε. In addition, we obtain a ''local'' result generalizing the above statement. When ψ2n is the cocycle from [Duke Math. J. 127 (2005), 487-517], we obtain a new proof as well as a generalization of the Lefschetz number theorem of Engeli-Felder. We also obtain an analogous ''local'' result pertaining to B. Shoikhet's construction of the holomorphic noncommutative residue of a differential operator for trivial vector bundles on complex parallelizable manifolds. This enables us to give a rigorous construction of the holomorphic noncommutative residue of D defined by B. Shoikhet when E is an arbitrary vector bundle on an arbitrary compact complex manifold X. Our local result immediately yields a proof of a generalization of Conjecture 3.3 of [Geom. Funct. Anal. 11 (2001), 1096-1124].
format Article
author Ramadoss, A.C.
spellingShingle Ramadoss, A.C.
Integration of Cocycles and Lefschetz Number Formulae for Differential Operators
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Ramadoss, A.C.
author_sort Ramadoss, A.C.
title Integration of Cocycles and Lefschetz Number Formulae for Differential Operators
title_short Integration of Cocycles and Lefschetz Number Formulae for Differential Operators
title_full Integration of Cocycles and Lefschetz Number Formulae for Differential Operators
title_fullStr Integration of Cocycles and Lefschetz Number Formulae for Differential Operators
title_full_unstemmed Integration of Cocycles and Lefschetz Number Formulae for Differential Operators
title_sort integration of cocycles and lefschetz number formulae for differential operators
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/146775
citation_txt Integration of Cocycles and Lefschetz Number Formulae for Differential Operators / A.C. Ramadoss // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 23 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT ramadossac integrationofcocyclesandlefschetznumberformulaefordifferentialoperators
first_indexed 2023-05-20T17:25:39Z
last_indexed 2023-05-20T17:25:39Z
_version_ 1796153273675153408