Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems

In this paper, we investigate the entanglement of multi-partite Grassmannian coherent states (GCSs) described by Grassmann numbers for n>2 degree of nilpotency. Choosing an appropriate weight function, we show that it is possible to construct some well-known entangled pure states, consisting of G...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Najarbashi, G., Maleki, Yu.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146777
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems / G. Najarbashi, Yu. Maleki // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146777
record_format dspace
spelling irk-123456789-1467772019-02-12T01:23:28Z Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems Najarbashi, G. Maleki, Yu. In this paper, we investigate the entanglement of multi-partite Grassmannian coherent states (GCSs) described by Grassmann numbers for n>2 degree of nilpotency. Choosing an appropriate weight function, we show that it is possible to construct some well-known entangled pure states, consisting of GHZ, W, Bell, cluster type and bi-separable states, which are obtained by integrating over tensor product of GCSs. It is shown that for three level systems, the Grassmann creation and annihilation operators b and b† together with bz form a closed deformed algebra, i.e., SUq(2) with q=e2πi/3, which is useful to construct entangled qutrit-states. The same argument holds for three level squeezed states. Moreover combining the Grassmann and bosonic coherent states we construct maximal entangled super coherent states. 2011 Article Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems / G. Najarbashi, Yu. Maleki // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81R30; 15A75; 81P40 DOI:10.3842/SIGMA.2011.011 http://dspace.nbuv.gov.ua/handle/123456789/146777 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper, we investigate the entanglement of multi-partite Grassmannian coherent states (GCSs) described by Grassmann numbers for n>2 degree of nilpotency. Choosing an appropriate weight function, we show that it is possible to construct some well-known entangled pure states, consisting of GHZ, W, Bell, cluster type and bi-separable states, which are obtained by integrating over tensor product of GCSs. It is shown that for three level systems, the Grassmann creation and annihilation operators b and b† together with bz form a closed deformed algebra, i.e., SUq(2) with q=e2πi/3, which is useful to construct entangled qutrit-states. The same argument holds for three level squeezed states. Moreover combining the Grassmann and bosonic coherent states we construct maximal entangled super coherent states.
format Article
author Najarbashi, G.
Maleki, Yu.
spellingShingle Najarbashi, G.
Maleki, Yu.
Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Najarbashi, G.
Maleki, Yu.
author_sort Najarbashi, G.
title Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems
title_short Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems
title_full Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems
title_fullStr Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems
title_full_unstemmed Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems
title_sort entanglement of grassmannian coherent states for multi-partite n-level systems
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/146777
citation_txt Entanglement of Grassmannian Coherent States for Multi-Partite n-Level Systems / G. Najarbashi, Yu. Maleki // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT najarbashig entanglementofgrassmanniancoherentstatesformultipartitenlevelsystems
AT malekiyu entanglementofgrassmanniancoherentstatesformultipartitenlevelsystems
first_indexed 2023-05-20T17:25:39Z
last_indexed 2023-05-20T17:25:39Z
_version_ 1796153273886965760