Fermionic Basis in Conformal Field Theory and Thermodynamic Bethe Ansatz for Excited States

We generalize the results of [Comm. Math. Phys. 299 (2010), 825-866] (hidden Grassmann structure IV) to the case of excited states of the transfer matrix of the six-vertex model acting in the so-called Matsubara direction. We establish an equivalence between a scaling limit of the partition function...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Boos, H.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146787
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Fermionic Basis in Conformal Field Theory and Thermodynamic Bethe Ansatz for Excited States / H. Boos // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We generalize the results of [Comm. Math. Phys. 299 (2010), 825-866] (hidden Grassmann structure IV) to the case of excited states of the transfer matrix of the six-vertex model acting in the so-called Matsubara direction. We establish an equivalence between a scaling limit of the partition function of the six-vertex model on a cylinder with quasi-local operators inserted and special boundary conditions, corresponding to particle-hole excitations, on the one hand, and certain three-point correlation functions of conformal field theory (CFT) on the other hand. As in hidden Grassmann structure IV, the fermionic basis developed in previous papers and its conformal limit are used for a description of the quasi-local operators. In paper IV we claimed that in the conformal limit the fermionic creation operators generate a basis equivalent to the basis of the descendant states in the conformal field theory modulo integrals of motion suggested by A. Zamolodchikov (1987). Here we argue that, in order to completely determine the transformation between the above fermionic basis and the basis of descendants in the CFT, we need to involve excitations. On the side of the lattice model we use the excited-state TBA approach. We consider in detail the case of the descendant at level 8.