Beyond the Gaussian
In this paper we present a non-Gaussian integral based on a cubic polynomial, instead of a quadratic, and give a fundamental formula in terms of its discriminant. It gives a mathematical reinforcement to the recent result by Morozov and Shakirov. We also present some related results. This is simply...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146791 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Beyond the Gaussian / K. Fujii // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146791 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1467912019-02-12T01:24:12Z Beyond the Gaussian Fujii, K. In this paper we present a non-Gaussian integral based on a cubic polynomial, instead of a quadratic, and give a fundamental formula in terms of its discriminant. It gives a mathematical reinforcement to the recent result by Morozov and Shakirov. We also present some related results. This is simply one modest step to go beyond the Gaussian but it already reveals many obstacles related with the big challenge of going further beyond the Gaussian. 2011 Article Beyond the Gaussian / K. Fujii // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 7 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 11D25; 11R29; 26B20; 81Q99 DOI:10.3842/SIGMA.2011.022 http://dspace.nbuv.gov.ua/handle/123456789/146791 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we present a non-Gaussian integral based on a cubic polynomial, instead of a quadratic, and give a fundamental formula in terms of its discriminant. It gives a mathematical reinforcement to the recent result by Morozov and Shakirov. We also present some related results. This is simply one modest step to go beyond the Gaussian but it already reveals many obstacles related with the big challenge of going further beyond the Gaussian. |
format |
Article |
author |
Fujii, K. |
spellingShingle |
Fujii, K. Beyond the Gaussian Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Fujii, K. |
author_sort |
Fujii, K. |
title |
Beyond the Gaussian |
title_short |
Beyond the Gaussian |
title_full |
Beyond the Gaussian |
title_fullStr |
Beyond the Gaussian |
title_full_unstemmed |
Beyond the Gaussian |
title_sort |
beyond the gaussian |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146791 |
citation_txt |
Beyond the Gaussian / K. Fujii // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 7 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT fujiik beyondthegaussian |
first_indexed |
2023-05-20T17:25:50Z |
last_indexed |
2023-05-20T17:25:50Z |
_version_ |
1796153275043545088 |