Beyond the Gaussian

In this paper we present a non-Gaussian integral based on a cubic polynomial, instead of a quadratic, and give a fundamental formula in terms of its discriminant. It gives a mathematical reinforcement to the recent result by Morozov and Shakirov. We also present some related results. This is simply...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Fujii, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146791
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Beyond the Gaussian / K. Fujii // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146791
record_format dspace
spelling irk-123456789-1467912019-02-12T01:24:12Z Beyond the Gaussian Fujii, K. In this paper we present a non-Gaussian integral based on a cubic polynomial, instead of a quadratic, and give a fundamental formula in terms of its discriminant. It gives a mathematical reinforcement to the recent result by Morozov and Shakirov. We also present some related results. This is simply one modest step to go beyond the Gaussian but it already reveals many obstacles related with the big challenge of going further beyond the Gaussian. 2011 Article Beyond the Gaussian / K. Fujii // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 7 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 11D25; 11R29; 26B20; 81Q99 DOI:10.3842/SIGMA.2011.022 http://dspace.nbuv.gov.ua/handle/123456789/146791 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we present a non-Gaussian integral based on a cubic polynomial, instead of a quadratic, and give a fundamental formula in terms of its discriminant. It gives a mathematical reinforcement to the recent result by Morozov and Shakirov. We also present some related results. This is simply one modest step to go beyond the Gaussian but it already reveals many obstacles related with the big challenge of going further beyond the Gaussian.
format Article
author Fujii, K.
spellingShingle Fujii, K.
Beyond the Gaussian
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Fujii, K.
author_sort Fujii, K.
title Beyond the Gaussian
title_short Beyond the Gaussian
title_full Beyond the Gaussian
title_fullStr Beyond the Gaussian
title_full_unstemmed Beyond the Gaussian
title_sort beyond the gaussian
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/146791
citation_txt Beyond the Gaussian / K. Fujii // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 7 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT fujiik beyondthegaussian
first_indexed 2023-05-20T17:25:50Z
last_indexed 2023-05-20T17:25:50Z
_version_ 1796153275043545088