A Bochner Theorem for Dunkl Polynomials

We establish an analogue of the Bochner theorem for first order operators of Dunkl type, that is we classify all such operators having polynomial solutions. Under natural conditions it is seen that the only families of orthogonal polynomials in this category are limits of little and big q-Jacobi pol...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Vinet, L., Zhedanov, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146799
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Bochner Theorem for Dunkl Polynomials / L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146799
record_format dspace
spelling irk-123456789-1467992019-02-12T01:23:51Z A Bochner Theorem for Dunkl Polynomials Vinet, L. Zhedanov, A. We establish an analogue of the Bochner theorem for first order operators of Dunkl type, that is we classify all such operators having polynomial solutions. Under natural conditions it is seen that the only families of orthogonal polynomials in this category are limits of little and big q-Jacobi polynomials as q=−1. 2011 Article A Bochner Theorem for Dunkl Polynomials / L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 33C45; 33C47; 42C05 DOI:10.3842/SIGMA.2011.020 http://dspace.nbuv.gov.ua/handle/123456789/146799 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We establish an analogue of the Bochner theorem for first order operators of Dunkl type, that is we classify all such operators having polynomial solutions. Under natural conditions it is seen that the only families of orthogonal polynomials in this category are limits of little and big q-Jacobi polynomials as q=−1.
format Article
author Vinet, L.
Zhedanov, A.
spellingShingle Vinet, L.
Zhedanov, A.
A Bochner Theorem for Dunkl Polynomials
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Vinet, L.
Zhedanov, A.
author_sort Vinet, L.
title A Bochner Theorem for Dunkl Polynomials
title_short A Bochner Theorem for Dunkl Polynomials
title_full A Bochner Theorem for Dunkl Polynomials
title_fullStr A Bochner Theorem for Dunkl Polynomials
title_full_unstemmed A Bochner Theorem for Dunkl Polynomials
title_sort bochner theorem for dunkl polynomials
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/146799
citation_txt A Bochner Theorem for Dunkl Polynomials / L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 16 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT vinetl abochnertheoremfordunklpolynomials
AT zhedanova abochnertheoremfordunklpolynomials
AT vinetl bochnertheoremfordunklpolynomials
AT zhedanova bochnertheoremfordunklpolynomials
first_indexed 2023-05-20T17:25:50Z
last_indexed 2023-05-20T17:25:50Z
_version_ 1796153275465072640