Supersymmetry Transformations for Delta Potentials
We make a detailed study of the first and second-order SUSY partners of a one-dimensional free Hamiltonian with a singular perturbation proportional to a Dirac delta function. It is shown that the second-order transformations increase the spectral manipulation possibilities offered by the standard f...
Збережено в:
Дата: | 2011 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146801 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Supersymmetry Transformations for Delta Potentials / David J. Fernández C., M. Gadella, L.M. Nieto // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 66 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146801 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1468012019-02-12T01:24:03Z Supersymmetry Transformations for Delta Potentials David J. Fernández C. Gadella, M. Nieto, L.M. We make a detailed study of the first and second-order SUSY partners of a one-dimensional free Hamiltonian with a singular perturbation proportional to a Dirac delta function. It is shown that the second-order transformations increase the spectral manipulation possibilities offered by the standard first-order supersymmetric quantum mechanics. 2011 Article Supersymmetry Transformations for Delta Potentials / David J. Fernández C., M. Gadella, L.M. Nieto // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 66 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81Q60 DOI:10.3842/SIGMA.2011.029 http://dspace.nbuv.gov.ua/handle/123456789/146801 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We make a detailed study of the first and second-order SUSY partners of a one-dimensional free Hamiltonian with a singular perturbation proportional to a Dirac delta function. It is shown that the second-order transformations increase the spectral manipulation possibilities offered by the standard first-order supersymmetric quantum mechanics. |
format |
Article |
author |
David J. Fernández C. Gadella, M. Nieto, L.M. |
spellingShingle |
David J. Fernández C. Gadella, M. Nieto, L.M. Supersymmetry Transformations for Delta Potentials Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
David J. Fernández C. Gadella, M. Nieto, L.M. |
author_sort |
David J. Fernández C. |
title |
Supersymmetry Transformations for Delta Potentials |
title_short |
Supersymmetry Transformations for Delta Potentials |
title_full |
Supersymmetry Transformations for Delta Potentials |
title_fullStr |
Supersymmetry Transformations for Delta Potentials |
title_full_unstemmed |
Supersymmetry Transformations for Delta Potentials |
title_sort |
supersymmetry transformations for delta potentials |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146801 |
citation_txt |
Supersymmetry Transformations for Delta Potentials / David J. Fernández C., M. Gadella, L.M. Nieto // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 66 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT davidjfernandezc supersymmetrytransformationsfordeltapotentials AT gadellam supersymmetrytransformationsfordeltapotentials AT nietolm supersymmetrytransformationsfordeltapotentials |
first_indexed |
2023-05-20T17:25:51Z |
last_indexed |
2023-05-20T17:25:51Z |
_version_ |
1796153275674787840 |