An Exactly Solvable Spin Chain Related to Hahn Polynomials

We study a linear spin chain which was originally introduced by Shi et al. [Phys. Rev. A 71 (2005), 032309, 5 pages], for which the coupling strength contains a parameter α and depends on the parity of the chain site. Extending the model by a second parameter β, it is shown that the single fermion e...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Stoilova, N.I., Van der Jeugt, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146802
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:An Exactly Solvable Spin Chain Related to Hahn Polynomials /N.I. Stoilova, J. Van der Jeugt // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146802
record_format dspace
spelling irk-123456789-1468022019-02-12T01:24:14Z An Exactly Solvable Spin Chain Related to Hahn Polynomials Stoilova, N.I. Van der Jeugt, J. We study a linear spin chain which was originally introduced by Shi et al. [Phys. Rev. A 71 (2005), 032309, 5 pages], for which the coupling strength contains a parameter α and depends on the parity of the chain site. Extending the model by a second parameter β, it is shown that the single fermion eigenstates of the Hamiltonian can be computed in explicit form. The components of these eigenvectors turn out to be Hahn polynomials with parameters (α,β) and (α+1,β−1). The construction of the eigenvectors relies on two new difference equations for Hahn polynomials. The explicit knowledge of the eigenstates leads to a closed form expression for the correlation function of the spin chain. We also discuss some aspects of a q-extension of this model. 2011 Article An Exactly Solvable Spin Chain Related to Hahn Polynomials /N.I. Stoilova, J. Van der Jeugt // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 22 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 81P45; 33C45 DOI:10.3842/SIGMA.2011.033 http://dspace.nbuv.gov.ua/handle/123456789/146802 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study a linear spin chain which was originally introduced by Shi et al. [Phys. Rev. A 71 (2005), 032309, 5 pages], for which the coupling strength contains a parameter α and depends on the parity of the chain site. Extending the model by a second parameter β, it is shown that the single fermion eigenstates of the Hamiltonian can be computed in explicit form. The components of these eigenvectors turn out to be Hahn polynomials with parameters (α,β) and (α+1,β−1). The construction of the eigenvectors relies on two new difference equations for Hahn polynomials. The explicit knowledge of the eigenstates leads to a closed form expression for the correlation function of the spin chain. We also discuss some aspects of a q-extension of this model.
format Article
author Stoilova, N.I.
Van der Jeugt, J.
spellingShingle Stoilova, N.I.
Van der Jeugt, J.
An Exactly Solvable Spin Chain Related to Hahn Polynomials
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Stoilova, N.I.
Van der Jeugt, J.
author_sort Stoilova, N.I.
title An Exactly Solvable Spin Chain Related to Hahn Polynomials
title_short An Exactly Solvable Spin Chain Related to Hahn Polynomials
title_full An Exactly Solvable Spin Chain Related to Hahn Polynomials
title_fullStr An Exactly Solvable Spin Chain Related to Hahn Polynomials
title_full_unstemmed An Exactly Solvable Spin Chain Related to Hahn Polynomials
title_sort exactly solvable spin chain related to hahn polynomials
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/146802
citation_txt An Exactly Solvable Spin Chain Related to Hahn Polynomials /N.I. Stoilova, J. Van der Jeugt // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 22 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT stoilovani anexactlysolvablespinchainrelatedtohahnpolynomials
AT vanderjeugtj anexactlysolvablespinchainrelatedtohahnpolynomials
AT stoilovani exactlysolvablespinchainrelatedtohahnpolynomials
AT vanderjeugtj exactlysolvablespinchainrelatedtohahnpolynomials
first_indexed 2023-05-20T17:25:51Z
last_indexed 2023-05-20T17:25:51Z
_version_ 1796153275782791168