Quantum Integrable Model of an Arrangement of Hyperplanes

The goal of this paper is to give a geometric construction of the Bethe algebra (of Hamiltonians) of a Gaudin model associated to a simple Lie algebra. More precisely, in this paper a quantum integrable model is assigned to a weighted arrangement of affine hyperplanes. We show (under certain assumpt...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Varchenko, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146807
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum Integrable Model of an Arrangement of Hyperplanes / A. Varchenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 29 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146807
record_format dspace
spelling irk-123456789-1468072019-02-12T01:24:27Z Quantum Integrable Model of an Arrangement of Hyperplanes Varchenko, A. The goal of this paper is to give a geometric construction of the Bethe algebra (of Hamiltonians) of a Gaudin model associated to a simple Lie algebra. More precisely, in this paper a quantum integrable model is assigned to a weighted arrangement of affine hyperplanes. We show (under certain assumptions) that the algebra of Hamiltonians of the model is isomorphic to the algebra of functions on the critical set of the corresponding master function. For a discriminantal arrangement we show (under certain assumptions) that the symmetric part of the algebra of Hamiltonians is isomorphic to the Bethe algebra of the corresponding Gaudin model. It is expected that this correspondence holds in general (without the assumptions). As a byproduct of constructions we show that in a Gaudin model (associated to an arbitrary simple Lie algebra), the Bethe vector, corresponding to an isolated critical point of the master function, is nonzero. 2011 Article Quantum Integrable Model of an Arrangement of Hyperplanes / A. Varchenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 29 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 82B23; 32S22; 17B81; 81R12 DOI:10.3842/SIGMA.2011.032 http://dspace.nbuv.gov.ua/handle/123456789/146807 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The goal of this paper is to give a geometric construction of the Bethe algebra (of Hamiltonians) of a Gaudin model associated to a simple Lie algebra. More precisely, in this paper a quantum integrable model is assigned to a weighted arrangement of affine hyperplanes. We show (under certain assumptions) that the algebra of Hamiltonians of the model is isomorphic to the algebra of functions on the critical set of the corresponding master function. For a discriminantal arrangement we show (under certain assumptions) that the symmetric part of the algebra of Hamiltonians is isomorphic to the Bethe algebra of the corresponding Gaudin model. It is expected that this correspondence holds in general (without the assumptions). As a byproduct of constructions we show that in a Gaudin model (associated to an arbitrary simple Lie algebra), the Bethe vector, corresponding to an isolated critical point of the master function, is nonzero.
format Article
author Varchenko, A.
spellingShingle Varchenko, A.
Quantum Integrable Model of an Arrangement of Hyperplanes
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Varchenko, A.
author_sort Varchenko, A.
title Quantum Integrable Model of an Arrangement of Hyperplanes
title_short Quantum Integrable Model of an Arrangement of Hyperplanes
title_full Quantum Integrable Model of an Arrangement of Hyperplanes
title_fullStr Quantum Integrable Model of an Arrangement of Hyperplanes
title_full_unstemmed Quantum Integrable Model of an Arrangement of Hyperplanes
title_sort quantum integrable model of an arrangement of hyperplanes
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/146807
citation_txt Quantum Integrable Model of an Arrangement of Hyperplanes / A. Varchenko // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 29 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT varchenkoa quantumintegrablemodelofanarrangementofhyperplanes
first_indexed 2023-05-20T17:25:52Z
last_indexed 2023-05-20T17:25:52Z
_version_ 1796153276313370624