A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n)

Employing the fact that the geometry of the n-qubit (n≥2) Pauli group is embodied in the structure of the symplectic polar space W(2n−1,2) and using properties of the Lagrangian Grassmannian LGr(n,2n) defined over the smallest Galois field, it is demonstrated that there exists a bijection between th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Holweck, F., Saniga, M., Lévay, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146814
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n) / F. Holweck, M. Saniga, P. Lévay // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146814
record_format dspace
spelling irk-123456789-1468142019-02-12T01:24:51Z A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n) Holweck, F. Saniga, M. Lévay, P. Employing the fact that the geometry of the n-qubit (n≥2) Pauli group is embodied in the structure of the symplectic polar space W(2n−1,2) and using properties of the Lagrangian Grassmannian LGr(n,2n) defined over the smallest Galois field, it is demonstrated that there exists a bijection between the set of maximum sets of mutually commuting elements of the n-qubit Pauli group and a certain subset of elements of the 2ⁿ⁻¹-qubit Pauli group. In order to reveal finer traits of this correspondence, the cases n=3 (also addressed recently by Lévay, Planat and Saniga [J. High Energy Phys. 2013 (2013), no. 9, 037, 35 pages]) and n=4 are discussed in detail. As an apt application of our findings, we use the stratification of the ambient projective space PG(2n−1,2) of the 2ⁿ⁻¹-qubit Pauli group in terms of G-orbits, where G≡SL(2,2)×SL(2,2)×⋯×SL(2,2)⋊Sn, to decompose π(LGr(n,2n)) into non-equivalent orbits. This leads to a partition of LGr(n,2n) into distinguished classes that can be labeled by elements of the above-mentioned Pauli groups. 2014 Article A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n) / F. Holweck, M. Saniga, P. Lévay // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 27 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 05B25; 51E20; 81P99 DOI:10.3842/SIGMA.2014.041 http://dspace.nbuv.gov.ua/handle/123456789/146814 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Employing the fact that the geometry of the n-qubit (n≥2) Pauli group is embodied in the structure of the symplectic polar space W(2n−1,2) and using properties of the Lagrangian Grassmannian LGr(n,2n) defined over the smallest Galois field, it is demonstrated that there exists a bijection between the set of maximum sets of mutually commuting elements of the n-qubit Pauli group and a certain subset of elements of the 2ⁿ⁻¹-qubit Pauli group. In order to reveal finer traits of this correspondence, the cases n=3 (also addressed recently by Lévay, Planat and Saniga [J. High Energy Phys. 2013 (2013), no. 9, 037, 35 pages]) and n=4 are discussed in detail. As an apt application of our findings, we use the stratification of the ambient projective space PG(2n−1,2) of the 2ⁿ⁻¹-qubit Pauli group in terms of G-orbits, where G≡SL(2,2)×SL(2,2)×⋯×SL(2,2)⋊Sn, to decompose π(LGr(n,2n)) into non-equivalent orbits. This leads to a partition of LGr(n,2n) into distinguished classes that can be labeled by elements of the above-mentioned Pauli groups.
format Article
author Holweck, F.
Saniga, M.
Lévay, P.
spellingShingle Holweck, F.
Saniga, M.
Lévay, P.
A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n)
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Holweck, F.
Saniga, M.
Lévay, P.
author_sort Holweck, F.
title A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n)
title_short A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n)
title_full A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n)
title_fullStr A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n)
title_full_unstemmed A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n)
title_sort notable relation between n-qubit and 2ⁿ⁻¹-qubit pauli groups via binary lgr(n,2n)
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146814
citation_txt A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n) / F. Holweck, M. Saniga, P. Lévay // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 27 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT holweckf anotablerelationbetweennqubitand2n1qubitpauligroupsviabinarylgrn2n
AT sanigam anotablerelationbetweennqubitand2n1qubitpauligroupsviabinarylgrn2n
AT levayp anotablerelationbetweennqubitand2n1qubitpauligroupsviabinarylgrn2n
AT holweckf notablerelationbetweennqubitand2n1qubitpauligroupsviabinarylgrn2n
AT sanigam notablerelationbetweennqubitand2n1qubitpauligroupsviabinarylgrn2n
AT levayp notablerelationbetweennqubitand2n1qubitpauligroupsviabinarylgrn2n
first_indexed 2023-05-20T17:25:42Z
last_indexed 2023-05-20T17:25:42Z
_version_ 1796153269549006848