A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n)
Employing the fact that the geometry of the n-qubit (n≥2) Pauli group is embodied in the structure of the symplectic polar space W(2n−1,2) and using properties of the Lagrangian Grassmannian LGr(n,2n) defined over the smallest Galois field, it is demonstrated that there exists a bijection between th...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146814 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n) / F. Holweck, M. Saniga, P. Lévay // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146814 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1468142019-02-12T01:24:51Z A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n) Holweck, F. Saniga, M. Lévay, P. Employing the fact that the geometry of the n-qubit (n≥2) Pauli group is embodied in the structure of the symplectic polar space W(2n−1,2) and using properties of the Lagrangian Grassmannian LGr(n,2n) defined over the smallest Galois field, it is demonstrated that there exists a bijection between the set of maximum sets of mutually commuting elements of the n-qubit Pauli group and a certain subset of elements of the 2ⁿ⁻¹-qubit Pauli group. In order to reveal finer traits of this correspondence, the cases n=3 (also addressed recently by Lévay, Planat and Saniga [J. High Energy Phys. 2013 (2013), no. 9, 037, 35 pages]) and n=4 are discussed in detail. As an apt application of our findings, we use the stratification of the ambient projective space PG(2n−1,2) of the 2ⁿ⁻¹-qubit Pauli group in terms of G-orbits, where G≡SL(2,2)×SL(2,2)×⋯×SL(2,2)⋊Sn, to decompose π(LGr(n,2n)) into non-equivalent orbits. This leads to a partition of LGr(n,2n) into distinguished classes that can be labeled by elements of the above-mentioned Pauli groups. 2014 Article A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n) / F. Holweck, M. Saniga, P. Lévay // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 27 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 05B25; 51E20; 81P99 DOI:10.3842/SIGMA.2014.041 http://dspace.nbuv.gov.ua/handle/123456789/146814 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Employing the fact that the geometry of the n-qubit (n≥2) Pauli group is embodied in the structure of the symplectic polar space W(2n−1,2) and using properties of the Lagrangian Grassmannian LGr(n,2n) defined over the smallest Galois field, it is demonstrated that there exists a bijection between the set of maximum sets of mutually commuting elements of the n-qubit Pauli group and a certain subset of elements of the 2ⁿ⁻¹-qubit Pauli group. In order to reveal finer traits of this correspondence, the cases n=3 (also addressed recently by Lévay, Planat and Saniga [J. High Energy Phys. 2013 (2013), no. 9, 037, 35 pages]) and n=4 are discussed in detail. As an apt application of our findings, we use the stratification of the ambient projective space PG(2n−1,2) of the 2ⁿ⁻¹-qubit Pauli group in terms of G-orbits, where G≡SL(2,2)×SL(2,2)×⋯×SL(2,2)⋊Sn, to decompose π(LGr(n,2n)) into non-equivalent orbits. This leads to a partition of LGr(n,2n) into distinguished classes that can be labeled by elements of the above-mentioned Pauli groups. |
format |
Article |
author |
Holweck, F. Saniga, M. Lévay, P. |
spellingShingle |
Holweck, F. Saniga, M. Lévay, P. A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n) Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Holweck, F. Saniga, M. Lévay, P. |
author_sort |
Holweck, F. |
title |
A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n) |
title_short |
A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n) |
title_full |
A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n) |
title_fullStr |
A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n) |
title_full_unstemmed |
A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n) |
title_sort |
notable relation between n-qubit and 2ⁿ⁻¹-qubit pauli groups via binary lgr(n,2n) |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146814 |
citation_txt |
A Notable Relation between n-Qubit and 2ⁿ⁻¹-Qubit Pauli Groups via Binary LGr(n,2n) / F. Holweck, M. Saniga, P. Lévay // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 27 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT holweckf anotablerelationbetweennqubitand2n1qubitpauligroupsviabinarylgrn2n AT sanigam anotablerelationbetweennqubitand2n1qubitpauligroupsviabinarylgrn2n AT levayp anotablerelationbetweennqubitand2n1qubitpauligroupsviabinarylgrn2n AT holweckf notablerelationbetweennqubitand2n1qubitpauligroupsviabinarylgrn2n AT sanigam notablerelationbetweennqubitand2n1qubitpauligroupsviabinarylgrn2n AT levayp notablerelationbetweennqubitand2n1qubitpauligroupsviabinarylgrn2n |
first_indexed |
2023-05-20T17:25:42Z |
last_indexed |
2023-05-20T17:25:42Z |
_version_ |
1796153269549006848 |