Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction
I present a construction of real or complex selfdual conformal 4-manifolds (of signature (2,2) in the real case) from a natural gauge field equation on a real or complex projective surface, the gauge group being the group of diffeomorphisms of a real or complex 2-manifold. The 4-manifolds obtained a...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146816 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction / D.M.J. Calderbank // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 25 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146816 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1468162019-02-12T01:24:10Z Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction Calderbank, D.M.J. I present a construction of real or complex selfdual conformal 4-manifolds (of signature (2,2) in the real case) from a natural gauge field equation on a real or complex projective surface, the gauge group being the group of diffeomorphisms of a real or complex 2-manifold. The 4-manifolds obtained are characterized by the existence of a foliation by selfdual null surfaces of a special kind. The classification by Dunajski and West of selfdual conformal 4-manifolds with a null conformal vector field is the special case in which the gauge group reduces to the group of diffeomorphisms commuting with a vector field, and I analyse the presence of compatible scalar-flat Kähler, hypercomplex and hyperkähler structures from a gauge-theoretic point of view. In an appendix, I discuss the twistor theory of projective surfaces, which is used in the body of the paper, but is also of independent interest. 2014 Article Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction / D.M.J. Calderbank // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 25 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53A30; 32L25; 37K25; 37K65; 53C25; 70S15; 83C20; 83C60 DOI:10.3842/SIGMA.2014.035 http://dspace.nbuv.gov.ua/handle/123456789/146816 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
I present a construction of real or complex selfdual conformal 4-manifolds (of signature (2,2) in the real case) from a natural gauge field equation on a real or complex projective surface, the gauge group being the group of diffeomorphisms of a real or complex 2-manifold. The 4-manifolds obtained are characterized by the existence of a foliation by selfdual null surfaces of a special kind. The classification by Dunajski and West of selfdual conformal 4-manifolds with a null conformal vector field is the special case in which the gauge group reduces to the group of diffeomorphisms commuting with a vector field, and I analyse the presence of compatible scalar-flat Kähler, hypercomplex and hyperkähler structures from a gauge-theoretic point of view. In an appendix, I discuss the twistor theory of projective surfaces, which is used in the body of the paper, but is also of independent interest. |
format |
Article |
author |
Calderbank, D.M.J. |
spellingShingle |
Calderbank, D.M.J. Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Calderbank, D.M.J. |
author_sort |
Calderbank, D.M.J. |
title |
Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction |
title_short |
Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction |
title_full |
Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction |
title_fullStr |
Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction |
title_full_unstemmed |
Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction |
title_sort |
selfdual 4-manifolds, projective surfaces, and the dunajski-west construction |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146816 |
citation_txt |
Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction / D.M.J. Calderbank // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 25 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT calderbankdmj selfdual4manifoldsprojectivesurfacesandthedunajskiwestconstruction |
first_indexed |
2023-05-20T17:25:42Z |
last_indexed |
2023-05-20T17:25:42Z |
_version_ |
1796153269760819200 |