Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction

I present a construction of real or complex selfdual conformal 4-manifolds (of signature (2,2) in the real case) from a natural gauge field equation on a real or complex projective surface, the gauge group being the group of diffeomorphisms of a real or complex 2-manifold. The 4-manifolds obtained a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Calderbank, D.M.J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146816
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction / D.M.J. Calderbank // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146816
record_format dspace
spelling irk-123456789-1468162019-02-12T01:24:10Z Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction Calderbank, D.M.J. I present a construction of real or complex selfdual conformal 4-manifolds (of signature (2,2) in the real case) from a natural gauge field equation on a real or complex projective surface, the gauge group being the group of diffeomorphisms of a real or complex 2-manifold. The 4-manifolds obtained are characterized by the existence of a foliation by selfdual null surfaces of a special kind. The classification by Dunajski and West of selfdual conformal 4-manifolds with a null conformal vector field is the special case in which the gauge group reduces to the group of diffeomorphisms commuting with a vector field, and I analyse the presence of compatible scalar-flat Kähler, hypercomplex and hyperkähler structures from a gauge-theoretic point of view. In an appendix, I discuss the twistor theory of projective surfaces, which is used in the body of the paper, but is also of independent interest. 2014 Article Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction / D.M.J. Calderbank // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 25 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53A30; 32L25; 37K25; 37K65; 53C25; 70S15; 83C20; 83C60 DOI:10.3842/SIGMA.2014.035 http://dspace.nbuv.gov.ua/handle/123456789/146816 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description I present a construction of real or complex selfdual conformal 4-manifolds (of signature (2,2) in the real case) from a natural gauge field equation on a real or complex projective surface, the gauge group being the group of diffeomorphisms of a real or complex 2-manifold. The 4-manifolds obtained are characterized by the existence of a foliation by selfdual null surfaces of a special kind. The classification by Dunajski and West of selfdual conformal 4-manifolds with a null conformal vector field is the special case in which the gauge group reduces to the group of diffeomorphisms commuting with a vector field, and I analyse the presence of compatible scalar-flat Kähler, hypercomplex and hyperkähler structures from a gauge-theoretic point of view. In an appendix, I discuss the twistor theory of projective surfaces, which is used in the body of the paper, but is also of independent interest.
format Article
author Calderbank, D.M.J.
spellingShingle Calderbank, D.M.J.
Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Calderbank, D.M.J.
author_sort Calderbank, D.M.J.
title Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction
title_short Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction
title_full Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction
title_fullStr Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction
title_full_unstemmed Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction
title_sort selfdual 4-manifolds, projective surfaces, and the dunajski-west construction
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146816
citation_txt Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction / D.M.J. Calderbank // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 25 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT calderbankdmj selfdual4manifoldsprojectivesurfacesandthedunajskiwestconstruction
first_indexed 2023-05-20T17:25:42Z
last_indexed 2023-05-20T17:25:42Z
_version_ 1796153269760819200