Integrable Background Geometries
This work has its origins in an attempt to describe systematically the integrable geometries and gauge theories in dimensions one to four related to twistor theory. In each such dimension, there is a nondegenerate integrable geometric structure, governed by a nonlinear integrable differential equati...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146817 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Integrable Background Geometries / D.M.J. Calderbank // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 83 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146817 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1468172019-02-12T01:24:41Z Integrable Background Geometries Calderbank, D.M.J. This work has its origins in an attempt to describe systematically the integrable geometries and gauge theories in dimensions one to four related to twistor theory. In each such dimension, there is a nondegenerate integrable geometric structure, governed by a nonlinear integrable differential equation, and each solution of this equation determines a background geometry on which, for any Lie group G, an integrable gauge theory is defined. In four dimensions, the geometry is selfdual conformal geometry and the gauge theory is selfdual Yang-Mills theory, while the lower-dimensional structures are nondegenerate (i.e., non-null) reductions of this. Any solution of the gauge theory on a k-dimensional geometry, such that the gauge group H acts transitively on an ℓ-manifold, determines a (k+ℓ)-dimensional geometry (k+ℓ ≤ 4) fibering over the k-dimensional geometry with H as a structure group. In the case of an ℓ-dimensional group H acting on itself by the regular representation, all (k+ℓ)-dimensional geometries with symmetry group H are locally obtained in this way. This framework unifies and extends known results about dimensional reductions of selfdual conformal geometry and the selfdual Yang-Mills equation, and provides a rich supply of constructive methods. In one dimension, generalized Nahm equations provide a uniform description of four pole isomonodromic deformation problems, and may be related to the SU(∞) Toda and dKP equations via a hodograph transformation. In two dimensions, the Diff(S¹) Hitchin equation is shown to be equivalent to the hyperCR Einstein-Weyl equation, while the SDiff(Σ²) Hitchin equation leads to a Euclidean analogue of Plebanski's heavenly equations. In three and four dimensions, the constructions of this paper help to organize the huge range of examples of Einstein-Weyl and selfdual spaces in the literature, as well as providing some new ones. The nondegenerate reductions have a long ancestry. More recently, degenerate or null reductions have attracted increased interest. Two of these reductions and their gauge theories (arguably, the two most significant) are also described. 2014 Article Integrable Background Geometries / D.M.J. Calderbank // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 83 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53A30; 32L25; 37K25; 37K65; 53B35; 53C25; 58J70; 70S15; 83C20; 83C80 DOI:10.3842/SIGMA.2014.034 http://dspace.nbuv.gov.ua/handle/123456789/146817 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
This work has its origins in an attempt to describe systematically the integrable geometries and gauge theories in dimensions one to four related to twistor theory. In each such dimension, there is a nondegenerate integrable geometric structure, governed by a nonlinear integrable differential equation, and each solution of this equation determines a background geometry on which, for any Lie group G, an integrable gauge theory is defined. In four dimensions, the geometry is selfdual conformal geometry and the gauge theory is selfdual Yang-Mills theory, while the lower-dimensional structures are nondegenerate (i.e., non-null) reductions of this. Any solution of the gauge theory on a k-dimensional geometry, such that the gauge group H acts transitively on an ℓ-manifold, determines a (k+ℓ)-dimensional geometry (k+ℓ ≤ 4) fibering over the k-dimensional geometry with H as a structure group. In the case of an ℓ-dimensional group H acting on itself by the regular representation, all (k+ℓ)-dimensional geometries with symmetry group H are locally obtained in this way. This framework unifies and extends known results about dimensional reductions of selfdual conformal geometry and the selfdual Yang-Mills equation, and provides a rich supply of constructive methods. In one dimension, generalized Nahm equations provide a uniform description of four pole isomonodromic deformation problems, and may be related to the SU(∞) Toda and dKP equations via a hodograph transformation. In two dimensions, the Diff(S¹) Hitchin equation is shown to be equivalent to the hyperCR Einstein-Weyl equation, while the SDiff(Σ²) Hitchin equation leads to a Euclidean analogue of Plebanski's heavenly equations. In three and four dimensions, the constructions of this paper help to organize the huge range of examples of Einstein-Weyl and selfdual spaces in the literature, as well as providing some new ones. The nondegenerate reductions have a long ancestry. More recently, degenerate or null reductions have attracted increased interest. Two of these reductions and their gauge theories (arguably, the two most significant) are also described. |
format |
Article |
author |
Calderbank, D.M.J. |
spellingShingle |
Calderbank, D.M.J. Integrable Background Geometries Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Calderbank, D.M.J. |
author_sort |
Calderbank, D.M.J. |
title |
Integrable Background Geometries |
title_short |
Integrable Background Geometries |
title_full |
Integrable Background Geometries |
title_fullStr |
Integrable Background Geometries |
title_full_unstemmed |
Integrable Background Geometries |
title_sort |
integrable background geometries |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146817 |
citation_txt |
Integrable Background Geometries / D.M.J. Calderbank // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 83 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT calderbankdmj integrablebackgroundgeometries |
first_indexed |
2023-05-20T17:25:43Z |
last_indexed |
2023-05-20T17:25:43Z |
_version_ |
1796153269866725376 |