Modules with Demazure Flags and Character Formulae

In this paper we study a family of finite-dimensional graded representations of the current algebra of sl₂ which are indexed by partitions. We show that these representations admit a flag where the successive quotients are Demazure modules which occur in a level ℓ-integrable module for A₁¹ as long a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Chari, V., Schneider, L., Shereen, P., Wand, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146820
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Modules with Demazure Flags and Character Formulae / V. Chari, L. Schneider, P. Shereen, J. Wand // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146820
record_format dspace
spelling irk-123456789-1468202019-02-12T01:23:04Z Modules with Demazure Flags and Character Formulae Chari, V. Schneider, L. Shereen, P. Wand, J. In this paper we study a family of finite-dimensional graded representations of the current algebra of sl₂ which are indexed by partitions. We show that these representations admit a flag where the successive quotients are Demazure modules which occur in a level ℓ-integrable module for A₁¹ as long as ℓ is large. We associate to each partition and to each ℓ an edge-labeled directed graph which allows us to describe in a combinatorial way the graded multiplicity of a given level ℓ-Demazure module in the filtration. In the special case of the partition 1s and ℓ=2, we give a closed formula for the graded multiplicity of level two Demazure modules in a level one Demazure module. As an application, we use our result along with the results of Naoi and Lenart et al., to give the character of a g-stable level one Demazure module associated to B¹n as an explicit combination of suitably specialized Macdonald polynomials. In the case of sl₂, we also study the filtration of the level two Demazure module by level three Demazure modules and compute the numerical filtration multiplicities and show that the graded multiplicites are related to (variants of) partial theta series. 2014 Article Modules with Demazure Flags and Character Formulae / V. Chari, L. Schneider, P. Shereen, J. Wand // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 16 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 06B15 ; 05E10; 14H42 DOI:10.3842/SIGMA.2014.032 http://dspace.nbuv.gov.ua/handle/123456789/146820 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper we study a family of finite-dimensional graded representations of the current algebra of sl₂ which are indexed by partitions. We show that these representations admit a flag where the successive quotients are Demazure modules which occur in a level ℓ-integrable module for A₁¹ as long as ℓ is large. We associate to each partition and to each ℓ an edge-labeled directed graph which allows us to describe in a combinatorial way the graded multiplicity of a given level ℓ-Demazure module in the filtration. In the special case of the partition 1s and ℓ=2, we give a closed formula for the graded multiplicity of level two Demazure modules in a level one Demazure module. As an application, we use our result along with the results of Naoi and Lenart et al., to give the character of a g-stable level one Demazure module associated to B¹n as an explicit combination of suitably specialized Macdonald polynomials. In the case of sl₂, we also study the filtration of the level two Demazure module by level three Demazure modules and compute the numerical filtration multiplicities and show that the graded multiplicites are related to (variants of) partial theta series.
format Article
author Chari, V.
Schneider, L.
Shereen, P.
Wand, J.
spellingShingle Chari, V.
Schneider, L.
Shereen, P.
Wand, J.
Modules with Demazure Flags and Character Formulae
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Chari, V.
Schneider, L.
Shereen, P.
Wand, J.
author_sort Chari, V.
title Modules with Demazure Flags and Character Formulae
title_short Modules with Demazure Flags and Character Formulae
title_full Modules with Demazure Flags and Character Formulae
title_fullStr Modules with Demazure Flags and Character Formulae
title_full_unstemmed Modules with Demazure Flags and Character Formulae
title_sort modules with demazure flags and character formulae
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146820
citation_txt Modules with Demazure Flags and Character Formulae / V. Chari, L. Schneider, P. Shereen, J. Wand // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 16 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT chariv moduleswithdemazureflagsandcharacterformulae
AT schneiderl moduleswithdemazureflagsandcharacterformulae
AT shereenp moduleswithdemazureflagsandcharacterformulae
AT wandj moduleswithdemazureflagsandcharacterformulae
first_indexed 2023-05-20T17:25:43Z
last_indexed 2023-05-20T17:25:43Z
_version_ 1796153270186541056