A Characterization of Invariant Connections

Given a principal fibre bundle with structure group S, and a fibre transitive Lie group G of automorphisms thereon, Wang's theorem identifies the invariant connections with certain linear maps ψ:g→s. In the present paper, we prove an extension of this theorem which applies to the general situat...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Hanusch, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146822
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Characterization of Invariant Connections / M. Hanusch // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146822
record_format dspace
spelling irk-123456789-1468222019-02-12T01:25:09Z A Characterization of Invariant Connections Hanusch, M. Given a principal fibre bundle with structure group S, and a fibre transitive Lie group G of automorphisms thereon, Wang's theorem identifies the invariant connections with certain linear maps ψ:g→s. In the present paper, we prove an extension of this theorem which applies to the general situation where G acts non-transitively on the base manifold. We consider several special cases of the general theorem, including the result of Harnad, Shnider and Vinet which applies to the situation where G admits only one orbit type. Along the way, we give applications to loop quantum gravity. 2014 Article A Characterization of Invariant Connections / M. Hanusch // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 22F50; 53C05; 53C80; 83C45 DOI:10.3842/SIGMA.2014.025 http://dspace.nbuv.gov.ua/handle/123456789/146822 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Given a principal fibre bundle with structure group S, and a fibre transitive Lie group G of automorphisms thereon, Wang's theorem identifies the invariant connections with certain linear maps ψ:g→s. In the present paper, we prove an extension of this theorem which applies to the general situation where G acts non-transitively on the base manifold. We consider several special cases of the general theorem, including the result of Harnad, Shnider and Vinet which applies to the situation where G admits only one orbit type. Along the way, we give applications to loop quantum gravity.
format Article
author Hanusch, M.
spellingShingle Hanusch, M.
A Characterization of Invariant Connections
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Hanusch, M.
author_sort Hanusch, M.
title A Characterization of Invariant Connections
title_short A Characterization of Invariant Connections
title_full A Characterization of Invariant Connections
title_fullStr A Characterization of Invariant Connections
title_full_unstemmed A Characterization of Invariant Connections
title_sort characterization of invariant connections
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146822
citation_txt A Characterization of Invariant Connections / M. Hanusch // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 10 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT hanuschm acharacterizationofinvariantconnections
AT hanuschm characterizationofinvariantconnections
first_indexed 2023-05-20T17:25:43Z
last_indexed 2023-05-20T17:25:43Z
_version_ 1796153270398353408