Tilting Modules in Truncated Categories
We begin the study of a tilting theory in certain truncated categories of modules G(Γ) for the current Lie algebra associated to a finite-dimensional complex simple Lie algebra, where Γ=P+×J, J is an interval in Z, and P+ is the set of dominant integral weights of the simple Lie algebra. We use this...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146827 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Tilting Modules in Truncated Categories / M. Bennett, A. Bianchi // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 25 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We begin the study of a tilting theory in certain truncated categories of modules G(Γ) for the current Lie algebra associated to a finite-dimensional complex simple Lie algebra, where Γ=P+×J, J is an interval in Z, and P+ is the set of dominant integral weights of the simple Lie algebra. We use this to put a tilting theory on the category G(Γ′) where Γ′=P′×J, where P′⊆P+ is saturated. Under certain natural conditions on Γ′, we note that G(Γ′) admits full tilting modules. |
---|