The Real K-Theory of Compact Lie Groups
Let G be a compact, connected, and simply-connected Lie group, equipped with a Lie group involution σG and viewed as a G-space with the conjugation action. In this paper, we present a description of the ring structure of the (equivariant) KR-theory of (G,σG) by drawing on previous results on the mod...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146832 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The Real K-Theory of Compact Lie Groups / Chi-Kwong Fok // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146832 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1468322019-02-12T01:23:27Z The Real K-Theory of Compact Lie Groups Chi-Kwong Fok Let G be a compact, connected, and simply-connected Lie group, equipped with a Lie group involution σG and viewed as a G-space with the conjugation action. In this paper, we present a description of the ring structure of the (equivariant) KR-theory of (G,σG) by drawing on previous results on the module structure of the KR-theory and the ring structure of the equivariant K-theory. 2014 Article The Real K-Theory of Compact Lie Groups / Chi-Kwong Fok // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 15 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 19L47; 57T10 DOI:10.3842/SIGMA.2014.022 http://dspace.nbuv.gov.ua/handle/123456789/146832 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let G be a compact, connected, and simply-connected Lie group, equipped with a Lie group involution σG and viewed as a G-space with the conjugation action. In this paper, we present a description of the ring structure of the (equivariant) KR-theory of (G,σG) by drawing on previous results on the module structure of the KR-theory and the ring structure of the equivariant K-theory. |
format |
Article |
author |
Chi-Kwong Fok |
spellingShingle |
Chi-Kwong Fok The Real K-Theory of Compact Lie Groups Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Chi-Kwong Fok |
author_sort |
Chi-Kwong Fok |
title |
The Real K-Theory of Compact Lie Groups |
title_short |
The Real K-Theory of Compact Lie Groups |
title_full |
The Real K-Theory of Compact Lie Groups |
title_fullStr |
The Real K-Theory of Compact Lie Groups |
title_full_unstemmed |
The Real K-Theory of Compact Lie Groups |
title_sort |
real k-theory of compact lie groups |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146832 |
citation_txt |
The Real K-Theory of Compact Lie Groups / Chi-Kwong Fok // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 15 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT chikwongfok therealktheoryofcompactliegroups AT chikwongfok realktheoryofcompactliegroups |
first_indexed |
2023-05-20T17:25:45Z |
last_indexed |
2023-05-20T17:25:45Z |
_version_ |
1796153271348363264 |