Second Order Symmetries of the Conformal Laplacian

Let (M,g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3. We determine the form of all the conformal symmetries of the conformal (or Yamabe) Laplacian on (M,g), which are given by differential operators of second order. They are constructed from conformal Killing 2-tensors satisf...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автори: Michel, J.P., Radoux, F., Šilhan, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146838
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Second Order Symmetries of the Conformal Laplacian / J.P. Michel, F. Radoux, J. Šilhan // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146838
record_format dspace
spelling irk-123456789-1468382019-02-12T01:25:15Z Second Order Symmetries of the Conformal Laplacian Michel, J.P. Radoux, F. Šilhan, J. Let (M,g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3. We determine the form of all the conformal symmetries of the conformal (or Yamabe) Laplacian on (M,g), which are given by differential operators of second order. They are constructed from conformal Killing 2-tensors satisfying a natural and conformally invariant condition. As a consequence, we get also the classification of the second order symmetries of the conformal Laplacian. Our results generalize the ones of Eastwood and Carter, which hold on conformally flat and Einstein manifolds respectively. We illustrate our results on two families of examples in dimension three. 2014 Article Second Order Symmetries of the Conformal Laplacian / J.P. Michel, F. Radoux, J. Šilhan // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 31 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58J10; 53A30; 70S10; 53D20; 53D55 DOI:10.3842/SIGMA.2014.016 http://dspace.nbuv.gov.ua/handle/123456789/146838 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let (M,g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3. We determine the form of all the conformal symmetries of the conformal (or Yamabe) Laplacian on (M,g), which are given by differential operators of second order. They are constructed from conformal Killing 2-tensors satisfying a natural and conformally invariant condition. As a consequence, we get also the classification of the second order symmetries of the conformal Laplacian. Our results generalize the ones of Eastwood and Carter, which hold on conformally flat and Einstein manifolds respectively. We illustrate our results on two families of examples in dimension three.
format Article
author Michel, J.P.
Radoux, F.
Šilhan, J.
spellingShingle Michel, J.P.
Radoux, F.
Šilhan, J.
Second Order Symmetries of the Conformal Laplacian
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Michel, J.P.
Radoux, F.
Šilhan, J.
author_sort Michel, J.P.
title Second Order Symmetries of the Conformal Laplacian
title_short Second Order Symmetries of the Conformal Laplacian
title_full Second Order Symmetries of the Conformal Laplacian
title_fullStr Second Order Symmetries of the Conformal Laplacian
title_full_unstemmed Second Order Symmetries of the Conformal Laplacian
title_sort second order symmetries of the conformal laplacian
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146838
citation_txt Second Order Symmetries of the Conformal Laplacian / J.P. Michel, F. Radoux, J. Šilhan // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 31 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT micheljp secondordersymmetriesoftheconformallaplacian
AT radouxf secondordersymmetriesoftheconformallaplacian
AT silhanj secondordersymmetriesoftheconformallaplacian
first_indexed 2023-05-20T17:25:46Z
last_indexed 2023-05-20T17:25:46Z
_version_ 1796153271979606016