Second Order Symmetries of the Conformal Laplacian
Let (M,g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3. We determine the form of all the conformal symmetries of the conformal (or Yamabe) Laplacian on (M,g), which are given by differential operators of second order. They are constructed from conformal Killing 2-tensors satisf...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146838 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Second Order Symmetries of the Conformal Laplacian / J.P. Michel, F. Radoux, J. Šilhan // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 31 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146838 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1468382019-02-12T01:25:15Z Second Order Symmetries of the Conformal Laplacian Michel, J.P. Radoux, F. Šilhan, J. Let (M,g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3. We determine the form of all the conformal symmetries of the conformal (or Yamabe) Laplacian on (M,g), which are given by differential operators of second order. They are constructed from conformal Killing 2-tensors satisfying a natural and conformally invariant condition. As a consequence, we get also the classification of the second order symmetries of the conformal Laplacian. Our results generalize the ones of Eastwood and Carter, which hold on conformally flat and Einstein manifolds respectively. We illustrate our results on two families of examples in dimension three. 2014 Article Second Order Symmetries of the Conformal Laplacian / J.P. Michel, F. Radoux, J. Šilhan // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 31 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58J10; 53A30; 70S10; 53D20; 53D55 DOI:10.3842/SIGMA.2014.016 http://dspace.nbuv.gov.ua/handle/123456789/146838 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let (M,g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3. We determine the form of all the conformal symmetries of the conformal (or Yamabe) Laplacian on (M,g), which are given by differential operators of second order. They are constructed from conformal Killing 2-tensors satisfying a natural and conformally invariant condition. As a consequence, we get also the classification of the second order symmetries of the conformal Laplacian. Our results generalize the ones of Eastwood and Carter, which hold on conformally flat and Einstein manifolds respectively. We illustrate our results on two families of examples in dimension three. |
format |
Article |
author |
Michel, J.P. Radoux, F. Šilhan, J. |
spellingShingle |
Michel, J.P. Radoux, F. Šilhan, J. Second Order Symmetries of the Conformal Laplacian Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Michel, J.P. Radoux, F. Šilhan, J. |
author_sort |
Michel, J.P. |
title |
Second Order Symmetries of the Conformal Laplacian |
title_short |
Second Order Symmetries of the Conformal Laplacian |
title_full |
Second Order Symmetries of the Conformal Laplacian |
title_fullStr |
Second Order Symmetries of the Conformal Laplacian |
title_full_unstemmed |
Second Order Symmetries of the Conformal Laplacian |
title_sort |
second order symmetries of the conformal laplacian |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146838 |
citation_txt |
Second Order Symmetries of the Conformal Laplacian / J.P. Michel, F. Radoux, J. Šilhan // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 31 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT micheljp secondordersymmetriesoftheconformallaplacian AT radouxf secondordersymmetriesoftheconformallaplacian AT silhanj secondordersymmetriesoftheconformallaplacian |
first_indexed |
2023-05-20T17:25:46Z |
last_indexed |
2023-05-20T17:25:46Z |
_version_ |
1796153271979606016 |