On the Smoothness of the Noncommutative Pillow and Quantum Teardrops

Recent results by Krähmer [Israel J. Math. 189 (2012), 237-266] on smoothness of Hopf-Galois extensions and by Liu [arXiv:1304.7117] on smoothness of generalized Weyl algebras are used to prove that the coordinate algebras of the noncommutative pillow orbifold [Internat. J. Math. 2 (1991), 139-166],...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Brzeziński, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146840
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Smoothness of the Noncommutative Pillow and Quantum Teardrops / T. Brzeziński // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146840
record_format dspace
spelling irk-123456789-1468402019-02-12T01:25:16Z On the Smoothness of the Noncommutative Pillow and Quantum Teardrops Brzeziński, T. Recent results by Krähmer [Israel J. Math. 189 (2012), 237-266] on smoothness of Hopf-Galois extensions and by Liu [arXiv:1304.7117] on smoothness of generalized Weyl algebras are used to prove that the coordinate algebras of the noncommutative pillow orbifold [Internat. J. Math. 2 (1991), 139-166], quantum teardrops O(WPq(1,l)) [Comm. Math. Phys. 316 (2012), 151-170], quantum lens spaces O(Lq(l;1,l)) [Pacific J. Math. 211 (2003), 249-263], the quantum Seifert manifold O(Σ³q) [J. Geom. Phys. 62 (2012), 1097-1107], quantum real weighted projective planes O(RP²q(l;±)) [PoS Proc. Sci. (2012), PoS(CORFU2011), 055, 10 pages] and quantum Seifert lens spaces O(Σ³q(l;−)) [Axioms 1 (2012), 201-225] are homologically smooth in the sense that as their own bimodules they admit finitely generated projective resolutions of finite length. 2014 Article On the Smoothness of the Noncommutative Pillow and Quantum Teardrops / T. Brzeziński // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58B32; 58B34 DOI:10.3842/SIGMA.2014.015 http://dspace.nbuv.gov.ua/handle/123456789/146840 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Recent results by Krähmer [Israel J. Math. 189 (2012), 237-266] on smoothness of Hopf-Galois extensions and by Liu [arXiv:1304.7117] on smoothness of generalized Weyl algebras are used to prove that the coordinate algebras of the noncommutative pillow orbifold [Internat. J. Math. 2 (1991), 139-166], quantum teardrops O(WPq(1,l)) [Comm. Math. Phys. 316 (2012), 151-170], quantum lens spaces O(Lq(l;1,l)) [Pacific J. Math. 211 (2003), 249-263], the quantum Seifert manifold O(Σ³q) [J. Geom. Phys. 62 (2012), 1097-1107], quantum real weighted projective planes O(RP²q(l;±)) [PoS Proc. Sci. (2012), PoS(CORFU2011), 055, 10 pages] and quantum Seifert lens spaces O(Σ³q(l;−)) [Axioms 1 (2012), 201-225] are homologically smooth in the sense that as their own bimodules they admit finitely generated projective resolutions of finite length.
format Article
author Brzeziński, T.
spellingShingle Brzeziński, T.
On the Smoothness of the Noncommutative Pillow and Quantum Teardrops
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Brzeziński, T.
author_sort Brzeziński, T.
title On the Smoothness of the Noncommutative Pillow and Quantum Teardrops
title_short On the Smoothness of the Noncommutative Pillow and Quantum Teardrops
title_full On the Smoothness of the Noncommutative Pillow and Quantum Teardrops
title_fullStr On the Smoothness of the Noncommutative Pillow and Quantum Teardrops
title_full_unstemmed On the Smoothness of the Noncommutative Pillow and Quantum Teardrops
title_sort on the smoothness of the noncommutative pillow and quantum teardrops
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146840
citation_txt On the Smoothness of the Noncommutative Pillow and Quantum Teardrops / T. Brzeziński // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 21 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT brzezinskit onthesmoothnessofthenoncommutativepillowandquantumteardrops
first_indexed 2023-05-20T17:25:46Z
last_indexed 2023-05-20T17:25:46Z
_version_ 1796153272084463616