On the Smoothness of the Noncommutative Pillow and Quantum Teardrops
Recent results by Krähmer [Israel J. Math. 189 (2012), 237-266] on smoothness of Hopf-Galois extensions and by Liu [arXiv:1304.7117] on smoothness of generalized Weyl algebras are used to prove that the coordinate algebras of the noncommutative pillow orbifold [Internat. J. Math. 2 (1991), 139-166],...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146840 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the Smoothness of the Noncommutative Pillow and Quantum Teardrops / T. Brzeziński // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146840 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1468402019-02-12T01:25:16Z On the Smoothness of the Noncommutative Pillow and Quantum Teardrops Brzeziński, T. Recent results by Krähmer [Israel J. Math. 189 (2012), 237-266] on smoothness of Hopf-Galois extensions and by Liu [arXiv:1304.7117] on smoothness of generalized Weyl algebras are used to prove that the coordinate algebras of the noncommutative pillow orbifold [Internat. J. Math. 2 (1991), 139-166], quantum teardrops O(WPq(1,l)) [Comm. Math. Phys. 316 (2012), 151-170], quantum lens spaces O(Lq(l;1,l)) [Pacific J. Math. 211 (2003), 249-263], the quantum Seifert manifold O(Σ³q) [J. Geom. Phys. 62 (2012), 1097-1107], quantum real weighted projective planes O(RP²q(l;±)) [PoS Proc. Sci. (2012), PoS(CORFU2011), 055, 10 pages] and quantum Seifert lens spaces O(Σ³q(l;−)) [Axioms 1 (2012), 201-225] are homologically smooth in the sense that as their own bimodules they admit finitely generated projective resolutions of finite length. 2014 Article On the Smoothness of the Noncommutative Pillow and Quantum Teardrops / T. Brzeziński // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 21 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 58B32; 58B34 DOI:10.3842/SIGMA.2014.015 http://dspace.nbuv.gov.ua/handle/123456789/146840 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Recent results by Krähmer [Israel J. Math. 189 (2012), 237-266] on smoothness of Hopf-Galois extensions and by Liu [arXiv:1304.7117] on smoothness of generalized Weyl algebras are used to prove that the coordinate algebras of the noncommutative pillow orbifold [Internat. J. Math. 2 (1991), 139-166], quantum teardrops O(WPq(1,l)) [Comm. Math. Phys. 316 (2012), 151-170], quantum lens spaces O(Lq(l;1,l)) [Pacific J. Math. 211 (2003), 249-263], the quantum Seifert manifold O(Σ³q) [J. Geom. Phys. 62 (2012), 1097-1107], quantum real weighted projective planes O(RP²q(l;±)) [PoS Proc. Sci. (2012), PoS(CORFU2011), 055, 10 pages] and quantum Seifert lens spaces O(Σ³q(l;−)) [Axioms 1 (2012), 201-225] are homologically smooth in the sense that as their own bimodules they admit finitely generated projective resolutions of finite length. |
format |
Article |
author |
Brzeziński, T. |
spellingShingle |
Brzeziński, T. On the Smoothness of the Noncommutative Pillow and Quantum Teardrops Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Brzeziński, T. |
author_sort |
Brzeziński, T. |
title |
On the Smoothness of the Noncommutative Pillow and Quantum Teardrops |
title_short |
On the Smoothness of the Noncommutative Pillow and Quantum Teardrops |
title_full |
On the Smoothness of the Noncommutative Pillow and Quantum Teardrops |
title_fullStr |
On the Smoothness of the Noncommutative Pillow and Quantum Teardrops |
title_full_unstemmed |
On the Smoothness of the Noncommutative Pillow and Quantum Teardrops |
title_sort |
on the smoothness of the noncommutative pillow and quantum teardrops |
publisher |
Інститут математики НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146840 |
citation_txt |
On the Smoothness of the Noncommutative Pillow and Quantum Teardrops / T. Brzeziński // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 21 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT brzezinskit onthesmoothnessofthenoncommutativepillowandquantumteardrops |
first_indexed |
2023-05-20T17:25:46Z |
last_indexed |
2023-05-20T17:25:46Z |
_version_ |
1796153272084463616 |