Exploring the Causal Structures of Almost Commutative Geometries
We investigate the causal relations in the space of states of almost commutative Lorentzian geometries. We fully describe the causal structure of a simple model based on the algebra S(R¹,¹)⊗M₂(C), which has a non-trivial space of internal degrees of freedom. It turns out that the causality condition...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146845 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Exploring the Causal Structures of Almost Commutative Geometries / N. Franco, M. Eckstein // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We investigate the causal relations in the space of states of almost commutative Lorentzian geometries. We fully describe the causal structure of a simple model based on the algebra S(R¹,¹)⊗M₂(C), which has a non-trivial space of internal degrees of freedom. It turns out that the causality condition imposes restrictions on the motion in the internal space. Moreover, we show that the requirement of causality favours a unitary evolution in the internal space. |
---|