Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
We identify a periodic reduction of the non-autonomous lattice potential Korteweg-de Vries equation with the additive discrete Painlevé equation with E₆⁽¹⁾ symmetry. We present a description of a set of symmetries of the reduced equations and their relations to the symmetries of the discrete Painlev...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2014
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146850 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation / C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 55 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We identify a periodic reduction of the non-autonomous lattice potential Korteweg-de Vries equation with the additive discrete Painlevé equation with E₆⁽¹⁾ symmetry. We present a description of a set of symmetries of the reduced equations and their relations to the symmetries of the discrete Painlevé equation. Finally, we exploit the simple symmetric form of the reduced equations to find rational and hypergeometric solutions of this discrete Painlevé equation. |
---|