Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation

We identify a periodic reduction of the non-autonomous lattice potential Korteweg-de Vries equation with the additive discrete Painlevé equation with E₆⁽¹⁾ symmetry. We present a description of a set of symmetries of the reduced equations and their relations to the symmetries of the discrete Painlev...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Ormerod, C.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2014
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146850
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation / C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 55 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146850
record_format dspace
spelling irk-123456789-1468502019-02-12T01:24:13Z Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation Ormerod, C.M. We identify a periodic reduction of the non-autonomous lattice potential Korteweg-de Vries equation with the additive discrete Painlevé equation with E₆⁽¹⁾ symmetry. We present a description of a set of symmetries of the reduced equations and their relations to the symmetries of the discrete Painlevé equation. Finally, we exploit the simple symmetric form of the reduced equations to find rational and hypergeometric solutions of this discrete Painlevé equation. 2014 Article Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation / C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 55 назв. — англ. DOI:10.3842/SIGMA.2014.002 1815-0659 2010 Mathematics Subject Classification: 39A10; 37K15; 33C05 http://dspace.nbuv.gov.ua/handle/123456789/146850 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We identify a periodic reduction of the non-autonomous lattice potential Korteweg-de Vries equation with the additive discrete Painlevé equation with E₆⁽¹⁾ symmetry. We present a description of a set of symmetries of the reduced equations and their relations to the symmetries of the discrete Painlevé equation. Finally, we exploit the simple symmetric form of the reduced equations to find rational and hypergeometric solutions of this discrete Painlevé equation.
format Article
author Ormerod, C.M.
spellingShingle Ormerod, C.M.
Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Ormerod, C.M.
author_sort Ormerod, C.M.
title Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
title_short Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
title_full Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
title_fullStr Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
title_full_unstemmed Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation
title_sort symmetries and special solutions of reductions of the lattice potential kdv equation
publisher Інститут математики НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/146850
citation_txt Symmetries and Special Solutions of Reductions of the Lattice Potential KdV Equation / C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 55 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT ormerodcm symmetriesandspecialsolutionsofreductionsofthelatticepotentialkdvequation
first_indexed 2023-05-20T17:25:48Z
last_indexed 2023-05-20T17:25:48Z
_version_ 1796153277679665152