Potentials Unbounded Below

Continuous interpolates are described for classical dynamical systems defined by discrete time-steps. Functional conjugation methods play a central role in obtaining the interpolations. The interpolates correspond to particle motion in an underlying potential, V. Typically, V has no lower bound and...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Curtright, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146859
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Potentials Unbounded Below / T. Curtright // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 18 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146859
record_format dspace
spelling irk-123456789-1468592019-02-12T01:24:21Z Potentials Unbounded Below Curtright, T. Continuous interpolates are described for classical dynamical systems defined by discrete time-steps. Functional conjugation methods play a central role in obtaining the interpolations. The interpolates correspond to particle motion in an underlying potential, V. Typically, V has no lower bound and can exhibit switchbacks wherein V changes form when turning points are encountered by the particle. The Beverton-Holt and Skellam models of population dynamics, and particular cases of the logistic map are used to illustrate these features. 2011 Article Potentials Unbounded Below / T. Curtright // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 18 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37C99; 37D45; 37E05; 37J05; 37M99; 39B22 DOI:10.3842/SIGMA.2011.042 http://dspace.nbuv.gov.ua/handle/123456789/146859 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Continuous interpolates are described for classical dynamical systems defined by discrete time-steps. Functional conjugation methods play a central role in obtaining the interpolations. The interpolates correspond to particle motion in an underlying potential, V. Typically, V has no lower bound and can exhibit switchbacks wherein V changes form when turning points are encountered by the particle. The Beverton-Holt and Skellam models of population dynamics, and particular cases of the logistic map are used to illustrate these features.
format Article
author Curtright, T.
spellingShingle Curtright, T.
Potentials Unbounded Below
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Curtright, T.
author_sort Curtright, T.
title Potentials Unbounded Below
title_short Potentials Unbounded Below
title_full Potentials Unbounded Below
title_fullStr Potentials Unbounded Below
title_full_unstemmed Potentials Unbounded Below
title_sort potentials unbounded below
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/146859
citation_txt Potentials Unbounded Below / T. Curtright // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 18 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT curtrightt potentialsunboundedbelow
first_indexed 2023-05-20T17:25:53Z
last_indexed 2023-05-20T17:25:53Z
_version_ 1796153278627577856