Potentials Unbounded Below
Continuous interpolates are described for classical dynamical systems defined by discrete time-steps. Functional conjugation methods play a central role in obtaining the interpolations. The interpolates correspond to particle motion in an underlying potential, V. Typically, V has no lower bound and...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2011
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146859 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Potentials Unbounded Below / T. Curtright // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146859 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1468592019-02-12T01:24:21Z Potentials Unbounded Below Curtright, T. Continuous interpolates are described for classical dynamical systems defined by discrete time-steps. Functional conjugation methods play a central role in obtaining the interpolations. The interpolates correspond to particle motion in an underlying potential, V. Typically, V has no lower bound and can exhibit switchbacks wherein V changes form when turning points are encountered by the particle. The Beverton-Holt and Skellam models of population dynamics, and particular cases of the logistic map are used to illustrate these features. 2011 Article Potentials Unbounded Below / T. Curtright // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 18 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37C99; 37D45; 37E05; 37J05; 37M99; 39B22 DOI:10.3842/SIGMA.2011.042 http://dspace.nbuv.gov.ua/handle/123456789/146859 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Continuous interpolates are described for classical dynamical systems defined by discrete time-steps. Functional conjugation methods play a central role in obtaining the interpolations. The interpolates correspond to particle motion in an underlying potential, V. Typically, V has no lower bound and can exhibit switchbacks wherein V changes form when turning points are encountered by the particle. The Beverton-Holt and Skellam models of population dynamics, and particular cases of the logistic map are used to illustrate these features. |
format |
Article |
author |
Curtright, T. |
spellingShingle |
Curtright, T. Potentials Unbounded Below Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Curtright, T. |
author_sort |
Curtright, T. |
title |
Potentials Unbounded Below |
title_short |
Potentials Unbounded Below |
title_full |
Potentials Unbounded Below |
title_fullStr |
Potentials Unbounded Below |
title_full_unstemmed |
Potentials Unbounded Below |
title_sort |
potentials unbounded below |
publisher |
Інститут математики НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146859 |
citation_txt |
Potentials Unbounded Below / T. Curtright // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 18 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT curtrightt potentialsunboundedbelow |
first_indexed |
2023-05-20T17:25:53Z |
last_indexed |
2023-05-20T17:25:53Z |
_version_ |
1796153278627577856 |