The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I

We wish to explore a link between the Lax integrability of the q-Painlevé equations and the symmetries of the q-Painlevé equations. We shall demonstrate that the connection preserving deformations that give rise to the q-Painlevé equations may be thought of as elements of the groups of Schlesinger t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автор: Ormerod, C.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2011
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146862
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I / C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146862
record_format dspace
spelling irk-123456789-1468622019-02-12T01:24:34Z The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I Ormerod, C.M. We wish to explore a link between the Lax integrability of the q-Painlevé equations and the symmetries of the q-Painlevé equations. We shall demonstrate that the connection preserving deformations that give rise to the q-Painlevé equations may be thought of as elements of the groups of Schlesinger transformations of their associated linear problems. These groups admit a very natural lattice structure. Each Schlesinger transformation induces a Bäcklund transformation of the q-Painlevé equation. Each translational Bäcklund transformation may be lifted to the level of the associated linear problem, effectively showing that each translational Bäcklund transformation admits a Lax pair. We will demonstrate this framework for the q-Painlevé equations up to and including q-PVI. 2011 Article The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I / C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 34M55; 39A13 DOI:10.3842/SIGMA.2011.045 http://dspace.nbuv.gov.ua/handle/123456789/146862 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We wish to explore a link between the Lax integrability of the q-Painlevé equations and the symmetries of the q-Painlevé equations. We shall demonstrate that the connection preserving deformations that give rise to the q-Painlevé equations may be thought of as elements of the groups of Schlesinger transformations of their associated linear problems. These groups admit a very natural lattice structure. Each Schlesinger transformation induces a Bäcklund transformation of the q-Painlevé equation. Each translational Bäcklund transformation may be lifted to the level of the associated linear problem, effectively showing that each translational Bäcklund transformation admits a Lax pair. We will demonstrate this framework for the q-Painlevé equations up to and including q-PVI.
format Article
author Ormerod, C.M.
spellingShingle Ormerod, C.M.
The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Ormerod, C.M.
author_sort Ormerod, C.M.
title The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I
title_short The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I
title_full The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I
title_fullStr The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I
title_full_unstemmed The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I
title_sort lattice structure of connection preserving deformations for q-painlevé equations i
publisher Інститут математики НАН України
publishDate 2011
url http://dspace.nbuv.gov.ua/handle/123456789/146862
citation_txt The Lattice Structure of Connection Preserving Deformations for q-Painlevé Equations I / C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 32 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT ormerodcm thelatticestructureofconnectionpreservingdeformationsforqpainleveequationsi
AT ormerodcm latticestructureofconnectionpreservingdeformationsforqpainleveequationsi
first_indexed 2023-05-20T17:25:53Z
last_indexed 2023-05-20T17:25:53Z
_version_ 1796153278943199232