Geometry of Centroaffine Surfaces in R⁵

We use Cartan's method of moving frames to compute a complete set of local invariants for nondegenerate, 2-dimensional centroaffine surfaces in R⁵∖{0} with nondegenerate centroaffine metric. We then give a complete classification of all homogeneous centroaffine surfaces in this class.

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Bushek, N., Clelland, J.N.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146863
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Geometry of Centroaffine Surfaces in R⁵ / N. Bushek // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146863
record_format dspace
spelling irk-123456789-1468632019-02-12T01:24:35Z Geometry of Centroaffine Surfaces in R⁵ Bushek, N. Clelland, J.N. We use Cartan's method of moving frames to compute a complete set of local invariants for nondegenerate, 2-dimensional centroaffine surfaces in R⁵∖{0} with nondegenerate centroaffine metric. We then give a complete classification of all homogeneous centroaffine surfaces in this class. 2015 Article Geometry of Centroaffine Surfaces in R⁵ / N. Bushek // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 23 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53A15; 58A15 DOI:10.3842/SIGMA.2015.001 http://dspace.nbuv.gov.ua/handle/123456789/146863 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We use Cartan's method of moving frames to compute a complete set of local invariants for nondegenerate, 2-dimensional centroaffine surfaces in R⁵∖{0} with nondegenerate centroaffine metric. We then give a complete classification of all homogeneous centroaffine surfaces in this class.
format Article
author Bushek, N.
Clelland, J.N.
spellingShingle Bushek, N.
Clelland, J.N.
Geometry of Centroaffine Surfaces in R⁵
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Bushek, N.
Clelland, J.N.
author_sort Bushek, N.
title Geometry of Centroaffine Surfaces in R⁵
title_short Geometry of Centroaffine Surfaces in R⁵
title_full Geometry of Centroaffine Surfaces in R⁵
title_fullStr Geometry of Centroaffine Surfaces in R⁵
title_full_unstemmed Geometry of Centroaffine Surfaces in R⁵
title_sort geometry of centroaffine surfaces in r⁵
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/146863
citation_txt Geometry of Centroaffine Surfaces in R⁵ / N. Bushek // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 23 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT bushekn geometryofcentroaffinesurfacesinr5
AT clellandjn geometryofcentroaffinesurfacesinr5
first_indexed 2023-05-20T17:25:53Z
last_indexed 2023-05-20T17:25:53Z
_version_ 1796153279048056832