Geometry of Centroaffine Surfaces in R⁵
We use Cartan's method of moving frames to compute a complete set of local invariants for nondegenerate, 2-dimensional centroaffine surfaces in R⁵∖{0} with nondegenerate centroaffine metric. We then give a complete classification of all homogeneous centroaffine surfaces in this class.
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146863 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Geometry of Centroaffine Surfaces in R⁵ / N. Bushek // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 23 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146863 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1468632019-02-12T01:24:35Z Geometry of Centroaffine Surfaces in R⁵ Bushek, N. Clelland, J.N. We use Cartan's method of moving frames to compute a complete set of local invariants for nondegenerate, 2-dimensional centroaffine surfaces in R⁵∖{0} with nondegenerate centroaffine metric. We then give a complete classification of all homogeneous centroaffine surfaces in this class. 2015 Article Geometry of Centroaffine Surfaces in R⁵ / N. Bushek // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 23 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 53A15; 58A15 DOI:10.3842/SIGMA.2015.001 http://dspace.nbuv.gov.ua/handle/123456789/146863 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We use Cartan's method of moving frames to compute a complete set of local invariants for nondegenerate, 2-dimensional centroaffine surfaces in R⁵∖{0} with nondegenerate centroaffine metric. We then give a complete classification of all homogeneous centroaffine surfaces in this class. |
format |
Article |
author |
Bushek, N. Clelland, J.N. |
spellingShingle |
Bushek, N. Clelland, J.N. Geometry of Centroaffine Surfaces in R⁵ Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Bushek, N. Clelland, J.N. |
author_sort |
Bushek, N. |
title |
Geometry of Centroaffine Surfaces in R⁵ |
title_short |
Geometry of Centroaffine Surfaces in R⁵ |
title_full |
Geometry of Centroaffine Surfaces in R⁵ |
title_fullStr |
Geometry of Centroaffine Surfaces in R⁵ |
title_full_unstemmed |
Geometry of Centroaffine Surfaces in R⁵ |
title_sort |
geometry of centroaffine surfaces in r⁵ |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146863 |
citation_txt |
Geometry of Centroaffine Surfaces in R⁵ / N. Bushek // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 23 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT bushekn geometryofcentroaffinesurfacesinr5 AT clellandjn geometryofcentroaffinesurfacesinr5 |
first_indexed |
2023-05-20T17:25:53Z |
last_indexed |
2023-05-20T17:25:53Z |
_version_ |
1796153279048056832 |