On 1-Harmonic Functions

Characterizations of entire subsolutions for the 1-harmonic equation of a constant 1-tension field are given with applications in geometry via transformation group theory. In particular, we prove that every level hypersurface of such a subsolution is calibrated and hence is area-minimizing over R; a...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автор: Wei, S.W.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146897
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On 1-Harmonic Functions / S.W. Wei // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146897
record_format dspace
spelling irk-123456789-1468972019-02-12T01:25:31Z On 1-Harmonic Functions Wei, S.W. Characterizations of entire subsolutions for the 1-harmonic equation of a constant 1-tension field are given with applications in geometry via transformation group theory. In particular, we prove that every level hypersurface of such a subsolution is calibrated and hence is area-minimizing over R; and every 7-dimensional SO(2) × SO(6)-invariant absolutely area-minimizing integral current in R8 is real analytic. The assumption on the SO(2) × SO(6)-invariance cannot be removed, due to the first counter-example in R8, proved by Bombieri, De Girogi and Giusti. 2007 Article On 1-Harmonic Functions / S.W. Wei // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53C40; 53C42 http://dspace.nbuv.gov.ua/handle/123456789/146897 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Characterizations of entire subsolutions for the 1-harmonic equation of a constant 1-tension field are given with applications in geometry via transformation group theory. In particular, we prove that every level hypersurface of such a subsolution is calibrated and hence is area-minimizing over R; and every 7-dimensional SO(2) × SO(6)-invariant absolutely area-minimizing integral current in R8 is real analytic. The assumption on the SO(2) × SO(6)-invariance cannot be removed, due to the first counter-example in R8, proved by Bombieri, De Girogi and Giusti.
format Article
author Wei, S.W.
spellingShingle Wei, S.W.
On 1-Harmonic Functions
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Wei, S.W.
author_sort Wei, S.W.
title On 1-Harmonic Functions
title_short On 1-Harmonic Functions
title_full On 1-Harmonic Functions
title_fullStr On 1-Harmonic Functions
title_full_unstemmed On 1-Harmonic Functions
title_sort on 1-harmonic functions
publisher Інститут математики НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/146897
citation_txt On 1-Harmonic Functions / S.W. Wei // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT weisw on1harmonicfunctions
first_indexed 2023-05-20T17:25:59Z
last_indexed 2023-05-20T17:25:59Z
_version_ 1796153282335342592