On 1-Harmonic Functions
Characterizations of entire subsolutions for the 1-harmonic equation of a constant 1-tension field are given with applications in geometry via transformation group theory. In particular, we prove that every level hypersurface of such a subsolution is calibrated and hence is area-minimizing over R; a...
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146897 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On 1-Harmonic Functions / S.W. Wei // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146897 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1468972019-02-12T01:25:31Z On 1-Harmonic Functions Wei, S.W. Characterizations of entire subsolutions for the 1-harmonic equation of a constant 1-tension field are given with applications in geometry via transformation group theory. In particular, we prove that every level hypersurface of such a subsolution is calibrated and hence is area-minimizing over R; and every 7-dimensional SO(2) × SO(6)-invariant absolutely area-minimizing integral current in R8 is real analytic. The assumption on the SO(2) × SO(6)-invariance cannot be removed, due to the first counter-example in R8, proved by Bombieri, De Girogi and Giusti. 2007 Article On 1-Harmonic Functions / S.W. Wei // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53C40; 53C42 http://dspace.nbuv.gov.ua/handle/123456789/146897 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Characterizations of entire subsolutions for the 1-harmonic equation of a constant 1-tension field are given with applications in geometry via transformation group theory. In particular, we prove that every level hypersurface of such a subsolution is calibrated and hence is area-minimizing over R; and every 7-dimensional SO(2) × SO(6)-invariant absolutely area-minimizing integral current in R8 is real analytic. The assumption on the SO(2) × SO(6)-invariance cannot be removed, due to the first counter-example in R8, proved by Bombieri, De Girogi and Giusti. |
format |
Article |
author |
Wei, S.W. |
spellingShingle |
Wei, S.W. On 1-Harmonic Functions Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Wei, S.W. |
author_sort |
Wei, S.W. |
title |
On 1-Harmonic Functions |
title_short |
On 1-Harmonic Functions |
title_full |
On 1-Harmonic Functions |
title_fullStr |
On 1-Harmonic Functions |
title_full_unstemmed |
On 1-Harmonic Functions |
title_sort |
on 1-harmonic functions |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146897 |
citation_txt |
On 1-Harmonic Functions / S.W. Wei // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 22 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT weisw on1harmonicfunctions |
first_indexed |
2023-05-20T17:25:59Z |
last_indexed |
2023-05-20T17:25:59Z |
_version_ |
1796153282335342592 |