Faster than Hermitian Time Evolution
For any pair of quantum states, an initial state |Iñ and a final quantum state |Fñ, in a Hilbert space, there are many Hamiltonians H under which |Iñ evolves into |Fñ. Let us impose the constraint that the difference between the largest and smallest eigenvalues of H, Emax and Emin, is held fixed. We...
Збережено в:
Дата: | 2007 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146898 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Faster than Hermitian Time Evolution / C.M. Bender // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 26 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146898 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1468982019-02-12T01:25:31Z Faster than Hermitian Time Evolution Bender, C.M. For any pair of quantum states, an initial state |Iñ and a final quantum state |Fñ, in a Hilbert space, there are many Hamiltonians H under which |Iñ evolves into |Fñ. Let us impose the constraint that the difference between the largest and smallest eigenvalues of H, Emax and Emin, is held fixed. We can then determine the Hamiltonian H that satisfies this constraint and achieves the transformation from the initial state to the final state in the least possible time τ. For Hermitian Hamiltonians, τ has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, τ can be made arbitrarily small without violating the time-energy uncertainty principle. The minimum value of τ can be made arbitrarily small because for PT-symmetric Hamiltonians the path from the vector |Iñ to the vector |Fñ, as measured using the Hilbert-space metric appropriate for this theory, can be made arbitrarily short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing. 2007 Article Faster than Hermitian Time Evolution / C.M. Bender // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 26 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81Q10; 81S99 http://dspace.nbuv.gov.ua/handle/123456789/146898 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
For any pair of quantum states, an initial state |Iñ and a final quantum state |Fñ, in a Hilbert space, there are many Hamiltonians H under which |Iñ evolves into |Fñ. Let us impose the constraint that the difference between the largest and smallest eigenvalues of H, Emax and Emin, is held fixed. We can then determine the Hamiltonian H that satisfies this constraint and achieves the transformation from the initial state to the final state in the least possible time τ. For Hermitian Hamiltonians, τ has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, τ can be made arbitrarily small without violating the time-energy uncertainty principle. The minimum value of τ can be made arbitrarily small because for PT-symmetric Hamiltonians the path from the vector |Iñ to the vector |Fñ, as measured using the Hilbert-space metric appropriate for this theory, can be made arbitrarily short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing. |
format |
Article |
author |
Bender, C.M. |
spellingShingle |
Bender, C.M. Faster than Hermitian Time Evolution Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Bender, C.M. |
author_sort |
Bender, C.M. |
title |
Faster than Hermitian Time Evolution |
title_short |
Faster than Hermitian Time Evolution |
title_full |
Faster than Hermitian Time Evolution |
title_fullStr |
Faster than Hermitian Time Evolution |
title_full_unstemmed |
Faster than Hermitian Time Evolution |
title_sort |
faster than hermitian time evolution |
publisher |
Інститут математики НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146898 |
citation_txt |
Faster than Hermitian Time Evolution / C.M. Bender // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 26 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT bendercm fasterthanhermitiantimeevolution |
first_indexed |
2023-05-20T17:25:59Z |
last_indexed |
2023-05-20T17:25:59Z |
_version_ |
1796153282441248768 |