On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra
In [Kyushu J. Math. 64 (2010), 81-144], it is discussed that a certain subalgebra of the quantum affine algebra Uq(sl₂) controls the second kind TD-algebra of type I (the degenerate q-Onsager algebra). The subalgebra, which we denote by U'q(sl₂), is generated by e+0, e±₁, k±¹ i (i=0,1) with e−0...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2015
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/146905 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra / T. Hattai, T. Ito // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-146905 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1469052019-02-12T01:25:43Z On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra Hattai, T. Ito, T. In [Kyushu J. Math. 64 (2010), 81-144], it is discussed that a certain subalgebra of the quantum affine algebra Uq(sl₂) controls the second kind TD-algebra of type I (the degenerate q-Onsager algebra). The subalgebra, which we denote by U'q(sl₂), is generated by e+0, e±₁, k±¹ i (i=0,1) with e−0 missing from the Chevalley generators e±i, k±¹i (i=0,1) of Uq(sl₂). In this paper, we determine the finite-dimensional irreducible representations of U′q(sl₂). Intertwiners are also determined. 2015 Article On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra / T. Hattai, T. Ito // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 5 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 05E30 DOI:10.3842/SIGMA.2015.007 http://dspace.nbuv.gov.ua/handle/123456789/146905 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In [Kyushu J. Math. 64 (2010), 81-144], it is discussed that a certain subalgebra of the quantum affine algebra Uq(sl₂) controls the second kind TD-algebra of type I (the degenerate q-Onsager algebra). The subalgebra, which we denote by U'q(sl₂), is generated by e+0, e±₁, k±¹ i (i=0,1) with e−0 missing from the Chevalley generators e±i, k±¹i (i=0,1) of Uq(sl₂). In this paper, we determine the finite-dimensional irreducible representations of U′q(sl₂). Intertwiners are also determined. |
format |
Article |
author |
Hattai, T. Ito, T. |
spellingShingle |
Hattai, T. Ito, T. On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Hattai, T. Ito, T. |
author_sort |
Hattai, T. |
title |
On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra |
title_short |
On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra |
title_full |
On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra |
title_fullStr |
On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra |
title_full_unstemmed |
On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra |
title_sort |
on a certain subalgebra of uq(sl₂) related to the degenerate q-onsager algebra |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/146905 |
citation_txt |
On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra / T. Hattai, T. Ito // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 5 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT hattait onacertainsubalgebraofuqsl2relatedtothedegenerateqonsageralgebra AT itot onacertainsubalgebraofuqsl2relatedtothedegenerateqonsageralgebra |
first_indexed |
2023-05-20T17:26:01Z |
last_indexed |
2023-05-20T17:26:01Z |
_version_ |
1796153283497164800 |