On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra

In [Kyushu J. Math. 64 (2010), 81-144], it is discussed that a certain subalgebra of the quantum affine algebra Uq(sl₂) controls the second kind TD-algebra of type I (the degenerate q-Onsager algebra). The subalgebra, which we denote by U'q(sl₂), is generated by e+0, e±₁, k±¹ i (i=0,1) with e−0...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Hattai, T., Ito, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2015
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/146905
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra / T. Hattai, T. Ito // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-146905
record_format dspace
spelling irk-123456789-1469052019-02-12T01:25:43Z On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra Hattai, T. Ito, T. In [Kyushu J. Math. 64 (2010), 81-144], it is discussed that a certain subalgebra of the quantum affine algebra Uq(sl₂) controls the second kind TD-algebra of type I (the degenerate q-Onsager algebra). The subalgebra, which we denote by U'q(sl₂), is generated by e+0, e±₁, k±¹ i (i=0,1) with e−0 missing from the Chevalley generators e±i, k±¹i (i=0,1) of Uq(sl₂). In this paper, we determine the finite-dimensional irreducible representations of U′q(sl₂). Intertwiners are also determined. 2015 Article On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra / T. Hattai, T. Ito // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 5 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 05E30 DOI:10.3842/SIGMA.2015.007 http://dspace.nbuv.gov.ua/handle/123456789/146905 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In [Kyushu J. Math. 64 (2010), 81-144], it is discussed that a certain subalgebra of the quantum affine algebra Uq(sl₂) controls the second kind TD-algebra of type I (the degenerate q-Onsager algebra). The subalgebra, which we denote by U'q(sl₂), is generated by e+0, e±₁, k±¹ i (i=0,1) with e−0 missing from the Chevalley generators e±i, k±¹i (i=0,1) of Uq(sl₂). In this paper, we determine the finite-dimensional irreducible representations of U′q(sl₂). Intertwiners are also determined.
format Article
author Hattai, T.
Ito, T.
spellingShingle Hattai, T.
Ito, T.
On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Hattai, T.
Ito, T.
author_sort Hattai, T.
title On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra
title_short On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra
title_full On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra
title_fullStr On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra
title_full_unstemmed On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra
title_sort on a certain subalgebra of uq(sl₂) related to the degenerate q-onsager algebra
publisher Інститут математики НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/146905
citation_txt On a Certain Subalgebra of Uq(sl₂) Related to the Degenerate q-Onsager Algebra / T. Hattai, T. Ito // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 5 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT hattait onacertainsubalgebraofuqsl2relatedtothedegenerateqonsageralgebra
AT itot onacertainsubalgebraofuqsl2relatedtothedegenerateqonsageralgebra
first_indexed 2023-05-20T17:26:01Z
last_indexed 2023-05-20T17:26:01Z
_version_ 1796153283497164800